\(2 + 2^2+2^3+2^4+2^5+...+2^{2016}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

Ta có:A=(2+22+26)+(23+24+28)+...+(22011+22012+22016) (Có 672 cặp)

          A=2.(1+2+32)+23.(1+2+32)+...+22011.(1+2+32)

          A=2.35+23.35+...+22011.35

          A=35.(2+23+...+22011) chia hết cho 35

              Vậy A chia hết cho 35

21 tháng 4 2018

Dễ VCL

10 tháng 11 2019

A) ko biết làm

B) càng ko biết làm

C) cũng ko biết làm

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

2 tháng 5 2017

2/

S = 2 + 22 + 23 +...+ 299

= (2+22+23) +...+ (297+298+299)

= 2(1+2+22)+...+297(1+2+22)

= 2.7 +...+ 297.7

= 7(2+...+297) chia hết cho 7

S = 2+22+23+...+299

= (2+22+23+24+25)+...+(295+296+297+298+299)

= 2(1+2+22+23+24)+...+295(1+2+22+23+24)

= 2.31+...+295.31

= 31(2+...+295) chia hết cho 31

3/

A = 1+5+52+....+5100 (1)

5A = 5+52+53+...+5101 (2)

Lấy (2) - (1) ta được

4A = 5101 - 1

A = \(\frac{5^{101}-1}{4}\)

2 tháng 5 2017

4/

Đặt A là tên của biểu thức trên

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

........

\(\frac{1}{8^2}< \frac{1}{7.8}=\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}< 1\)

Vậy...

5/

a, Gọi UCLN(n+1,2n+3) = d

Ta có : n+1 chia hết cho d => 2(n+1) chia hết cho d => 2n+2 chia hết cho d

           2n+3 chia hết cho d

=> 2n+2 - (2n+3) chia hết cho d

=> -1 chia hết cho d => d = {-1;1}

Vậy...

b, Gọi UCLN(2n+3,4n+8) = d

Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d

          4n+8 chia hết cho d 

=> 4n+6 - (4n+8) chia hết cho d

=> -2 chia hết cho d => d = {1;-1;2;-2}

Mà 2n+3 lẻ => d lẻ => d khác 2;-2 => d = {1;-1}

Vậy...

19 tháng 10 2018

\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{10}+2^{11}\right)\)

\(A=3+2^2.\left(1+2\right)+...+2^{10}.\left(1+2\right)\)

\(A=3+2^2.3+....+2^{10}.3\)

\(A=3.\left(1+2^2+...+2^{10}\right)⋮3\)

2) TH1: n là số chẵn

=> n chia hết cho 2=> n.(n+13) chia hết cho 2

TH2: n là số lẻ

=>(n+13) chia hết cho 2=>n.(n+13) chia hết cho 2

Vậy n.(n+13) chia hết cho 2 vs mọi n thuộc N

29 tháng 12 2019

\(S=1+5+5^2+5^3+.......+5^{2017}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+......+\left(5^{2016}+5^{2017}\right)\)

\(=6+5^2\left(1+5\right)+.........+5^{2016}\left(1+5\right)\)

\(=6+5^2.6+.......+5^{2016}.6=6\left(1+5^2+......+5^{2016}\right)⋮3\)

S=1+5+52+53+54+....+52017

S=(1+5)+(52+53)+(54+55)+.....+(52016+52017)

S=(1+5)+52.(1+5)+54.(1+5)+...+52016.(1+5)

S=6+52.6+54.6+...+52016.6

S=6.(1+52+54+...+52016)

S=2.3.(1+52+54+...+52016)\(⋮\)3

Chúc bn học tốt

7 tháng 8 2016

a) \(A=2+2^2+2^3+2^4+...+2^{60}\)

        \(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

        \(=2\left(2+1\right)+2^3\left(2+1\right)+...+2^{59}\left(2+1\right)\)

        \(=3\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(A⋮3\)

b) \(A=2+2^2+2^3+2^4+...+2^{60}\)

        \(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)

        \(=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{58}\left(1+2^2\right)\)

        \(=5\left(2+2^2+...+2^{58}\right)⋮5\)

Vậy \(A⋮5\)

c) \(A=2+2^2+2^3+2^4+...+2^{60}\)

        \(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

        \(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+..+2^{58}\left(1+2+2^2\right)\)

        \(=7\left(2+2^4+...+2^{58}\right)⋮7\)

Vậy \(A⋮7\)

 

1 tháng 11 2018

\(M=2+2^3+2^5+2^7+....+2^{51}\)

\(=\left(2+2^3\right)+\left(2^5+2^7\right)+....+\left(2^{49}+2^{51}\right)\)

\(=10+2^4\left(2+2^3\right)+....+2^{48}\left(2+2^3\right)\)

\(=10+2^4.10+...+2^{48}.10\)

\(=10\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮10\)

\(=2.5.\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮5\)

1 tháng 11 2018

\(M=2+2^3+2^5+2^7+....+2^{51}.\)

\(M+2^{ }=2+2+2^3+2^5+2^7+.....+2^{51}\)

\(=\left(2+2+2^3\right)+\left(2^5+2^7+2^9\right)+....+\left(2^{47}+2^{49}+2^{51}\right)\)

\(=12+2^4\left(2+2^3+2^5\right)+......+2^{46}\left(2+2^3+2^5\right)\)

\(=12+2^4.42+....+2^{46}.42\)

\(=12+7.3.2\left(2^4+...+2^{46}\right)\)

\(\Rightarrow M=\left[12+7.3.2\left(2^4+.....+2^{46}\right)\right]-2\)

\(=10+7.3.2\left(2^4+....+2^{46}\right)\)

Ta có:  \(7.3.2\left(2^4+...+2^{46}\right)⋮7\)mà 10 không chia hết cho 7

Suy M không chia hết cho 7