Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{16}\)
\(\Leftrightarrow A=\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{16}\right)+\left(\frac{1}{3}+\frac{1}{5}+...+\frac{1}{15}\right)\)
Đặt \(\frac{1}{2}+\frac{1}{4}+...\frac{1}{16}=B\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{3}...+\frac{1}{8}\)
\(2B-B=B=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}\)
Ta có:
\(A=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{15}\)
\(A=\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}\right).2+1+\frac{1}{9}+\frac{1}{11}+...+\frac{1}{15}\)
Tính A ra rồi chứng minh nó không phải phân số.
Theo đề bài thì A không phải là số tự nhiên suy ra A<1. Ta có
1/4+1/9+1/16+1/25+...+1/100
=1/2^2+1/3^2+1/4^2+1/5^2+...+1/10^2
=1/2x2+1/3x3+1/4x4+1/5x5+...+1/10x10<1/1x2+1/2x3+1/3x4+1/4x5+...+1/9x10
=>A<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10
=>A<1/1-1/10
=>A<9/10
Vì 9/10<1=>A<1
Vậy A không phải số tự nhiên
Lời giải:
$A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2002-2001}{2001.2002}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2001}-\frac{1}{2002}$
$=1-\frac{1}{2002}<1$
Mà hiển nhiên $A>0$
$\Rightarrow 0< A< 1$. Do đó $A$ không phải số tự nhiên.
Hình như đề thiếu phải ko?