Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có :
\(9^{1945}-2^{1930}=\left(9^5\right)^{389}-\left(2^{10}\right)^{193}=\left(.....9\right)-\left(.....4\right)=\left(............5\right)⋮5\)
\(\Leftrightarrowđpcm\)
giả sử a chia hết cho 5
=>a2 chia hết cho 5
=>a2-1 không chia hết cho 5
nếu a2-1 chia hết cho 5
=>a2 đồng dư với 1(mod 5)
=>a đồng dư với -1 hoặc 1(mod 5)
=>a có tận cùng là 4;6;1;9
=>đpcm
^-^
\(5^{10}+5^9+5^8=5^8.\left(5^2+5+1\right)=5^8.31\) chia hết cho 31
\(5^{10}+5^9+5^8=5^8\left(5^2+5+1\right)\)
\(=5^8\left(25+5+1\right)=5^8.31⋮31\)
Vậy biểu thức trên chia hết cho 31
\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=\)
\(=5^3.21⋮7\)
\(2^{27}+2^{25}=2^{25}.\left(2^2+1\right)=2^{25}.\left(4+1\right)=2^{25}.5⋮5\)
\(\text{Đặt A=}1+5+5^2+5^3+...+5^{403}+5^{404}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{402}+5^{403}+5^{404}\right)\)
\(=\left(1+5+25\right)+5^3.\left(1+5+5^2\right)+...+5^{402}.\left(1+5+5^2\right)\)
\(=31+5^3.31+...+5^{402}.31\)
\(=31.\left(1+5^3+...+5^{402}\right)\text{chia hết cho 31}\)
=> A chia hết cho 31 => đpcm.
=88-165
=224-220
=220.[24-1]
=220.15 chia hết cho 15
Vậy 88-165 chia hết cho 15
b,
=105-253
=55.25-56
=55.[25-5]
=55.27 chia hết cho 27
Vậy 105-253 chia hết cho 27
7^6+7^5-7^4=7^4(7^2+7-1)=7^4.55=7^4.5.11 chia hết cho 11 (đpcm)
ta có 7^6 + 7^5 - 7^4 = 7^4 x(7^2 + 7 - 1)
= 7^4 x 55
Do 55 chia hết cho 11 nên 7^4 x 55 chia hết cho 11
Vậy 7^6 + 7^5 + 7^4 chia hết cho 11
\(\left\{{}\begin{matrix}9^{1945}=\left(9^5\right)^{389}=\overline{....9}\\2^{1930}=\left(2^{10}\right)^{193}=\overline{....4}\end{matrix}\right.\)
\(9^{1945}-2^{1930}=\overline{...9}-\overline{....4}=\overline{....5}⋮5\)
Ta có đpcm