K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
20 tháng 3 2022

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{2}-\frac{1}{101}>\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

14 tháng 1 2016

có thể cho mình cách giải được không?

15 tháng 6 2019

Ta có: B=1/3+2/32+3/33+...+99/399+100/3100

          3B=1+1/3+2/32+3/33+...+99/399

         3B-B=(1+1/3+2/32+3/33+...+99/399)-(1/3+2/32+3/33+4/34+..+99/399+100/3100)

Đặt A=1/3+1/32+1/33+..+1/399

    3A=1+1/3+1/32+..+1/399

2A=1-1/399=>A=1-1/399/2

Thay vào 2B...........................

Ta sẽ ra B<3/12

-Chúc hk tốt-

    

24 tháng 8 2015

\(\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};\frac{1}{5^2}<\frac{1}{4.5};....;\frac{1}{100^2}<\frac{1}{99.100}\)

=> \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{100^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(A<\frac{1}{2}-\frac{1}{100}<\frac{1}{2}\)

Vâyk...

24 tháng 8 2015

ta thấy:

1/3^2<1/2.3

1/4^2<1/3.4

.................

1/100^2<1/99.100

=>1/3^2+1/4^2+1/5^2+.........1/100^2<1/2.3+1/3.4+1/4.5+....+1/99.100

=1/2-1/3+1/3-1/4+.........+1/99-1/100

=1/2-1/100<1/2(đpcm)

 
23 tháng 10 2021

\(3,1+5^2+5^4+...+5^{26}\)

\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)

\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)

\(=26+5^4.26+...+5^{24}.26\)

\(=26\left(5^4+...+5^{24}\right)\)

Vì  \(26⋮26\)

\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)

\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)

23 tháng 10 2021

\(4,1+2^2+2^4+...+2^{100}\)

\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)

\(=21+2^6.21...+2^{98}.21\)

\(=21\left(2^6+...+2^{98}\right)\)

Có : \(21\left(2^6+...+2^{98}\right)⋮21\)

\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)

11 tháng 6 2020

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{98^2}+\frac{1}{100^2}\)

\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{97\cdot98}+\frac{1}{99\cdot100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(< 1\)