Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)
Tương tự cộng lại quy đồng ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
Ta đổi chiều bất đẳng thức, khi đó bất đẳng thức cần chứng minh tương đương với:
\(18\left(\frac{a^3}{1+a^3}+\frac{b^3}{1+b^3}+\frac{c^3}{1+c^3}\right)+\left(a+b+c\right)^3\ge54\)
Để ý abc=1 thì \(\frac{a^3}{1+a^3}=\frac{a^3}{abc+a^3}=\frac{a^2}{bc+a^2}\)nên bất đẳng thức trên thành:
\(18\left(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\right)+\left(a+b+c\right)^3\ge54\)
Lại cũng từ \(abc=1\) ta có \(\left(a+b+c\right)^3\ge27abc=27\), do đó ta sẽ chứng minh được khi ta chỉ ra được:
\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{3}{2}\)
Vế trái của đánh giá trên áp dụng bất đẳng thức Bunhiacopxki dạng phân thức. Lúc này ta được:
\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
Tuy nhiên để đến khi \(a=b=c=1\) thì:
\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}=\left(a+b+c\right)^3=27\)
Ta sử dụng bất đẳng thức Cauchy dạng \(x+y\ge2\sqrt{xy}\), khi đó ta được:
\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}+\left(a+b+c\right)^3\ge\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\)
Chứng minh sẽ hoàn tất nếu ta chỉ được:
\(\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\ge54\Leftrightarrow\left(a+b+c\right)^5\ge\frac{81}{2}\left(a^2+b^2+c^2+ab+bc+ca\right)\)
Vậy theo bất đẳng thức Cauchy ta được:
\(\left(a+b+c\right)^6=\left[\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\right]^3\)
\(\ge27\left(a+b+c\right)^2\left(ab+bc+ca\right)^2\ge81abc\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
\(=81\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
Khi đó ta được:
\(\left(a+b+c\right)^5\ge81\left(a^2+b^2+c^2\right)\)
Vậy ta cần chỉ ra rằng:
\(2\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+ab+bc+ca\)
Vậy bất đẳng thức trên tương đương với \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\), là một bất đẳng thức hiển nhiên đúng.
Vậy bất đẳng thức được chứng minh, dấu đẳng thức xảy ra khi \(a=b=c=1\)
sửa: chứng minh \(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{3}{2}\)
áp dụng bđt Cauchy ta có
\(\frac{1}{1+ab}=1-\frac{1}{1+ab}\ge1-\frac{ab}{2\sqrt{ab}}=1-\frac{\sqrt{ab}}{2}\)
tương tự ta có \(\hept{\begin{cases}\frac{1}{1+bc}\ge1-\frac{\sqrt{bc}}{2}\\\frac{1}{1+ca}\ge1-\frac{\sqrt{ca}}{2}\end{cases}}\)
cộng theo vế các bđt trên và áp dụng bđt Cauchy ta được
\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge3-\frac{1}{2}\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(\ge3-\frac{1}{2}\left(\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\right)=3-\frac{a+b+c}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
dấu "=" xảy ra khi \(\hept{\begin{cases}1+ab=1+bc=1+ca\\a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)
Ta co:
\(VT=\Sigma_{cyc}\frac{a}{ca+1}=\Sigma_{cyc}\frac{a}{ca+abc}=\Sigma_{cyc}\frac{1}{c+bc}\)
Xet
\(\Sigma_{cyc}\frac{1}{c+bc}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{c}+\frac{1}{bc}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{4}\left(ab+bc+ca+a+b+c\right)\)
bdt can chung minh thanh
\(ab+bc+ca+a+b+c\le2\left(a^2+b^2+c^2\right)\)
Ta lai co:
\(a^2+b^2+c^2\ge ab+bc+ca\)
Gio ta can chung minh:
\(a^2+b^2+c^2\ge a+b+c\)
Ta co hai danh gia:
\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(1=\sqrt[3]{abc}\le\frac{a+b+c}{3}\le\frac{\sqrt{3\left(a^2+b^2+c^2\right)}}{3}\Rightarrow a^2+b^2+c^2\ge3\)
Suy ra can chung minh:
\(a^2+b^2+c^2\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2-3\right)\ge0\) (đúng)
Dau '=' xay ra khi \(a=b=c=1\)
mn giup voi minh can gap lam
Vũ Minh TuấnBăng Băng 2k6Nguyễn Việt LâmPhạm Lan HươngNguyễn Huy Tú Nguyễn Thị Thùy TrâmNo choice teentthbảo phạmHo Nhat Minh
\(\Leftrightarrow\sum\frac{2}{a^2+b^2+2}\le\frac{3}{2}\Leftrightarrow\sum\frac{a^2+b^2}{a^2+b^2+2}\ge\frac{3}{2}\)
Ta có: \(\sum\frac{a^2+b^2}{a^2+b^2+2}\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)
Nên ta chỉ cần chứng minh \(\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a^2+b^2+c^2+\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+b^2\right)\left(c^2+a^2\right)}+\sqrt{\left(b^2+c^2\right)\left(c^2+a^2\right)}}{a^2+b^2+c^2+3}\ge\frac{3}{2}\)
\(\Leftrightarrow\sum\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}\) (1)
Mà \(\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge ac+b^2\)
\(\sqrt{\left(a^2+b^2\right)\left(a^2+c^2\right)}\ge a^2+bc\) ; \(\sqrt{\left(b^2+c^2\right)\left(a^2+c^2\right)}\ge ab+c^2\)
\(\Rightarrow\sum\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge a^2+b^2+c^2+ab+bc+ca\)
\(\Rightarrow\sum\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}\)
\(\Rightarrow\left(1\right)\) đúng nên ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=1\)
Để ý rằng \(a+b+c=1\) hay \(\left(a+b+c\right)^2=1\)nên ta cần biển đổi a,b,c xuất hiện các đại lượng \(\frac{\sqrt{a}}{\sqrt{c+2b}};\frac{\sqrt{b}}{\sqrt{a+2c}};\frac{\sqrt{c}}{\sqrt{b+2a}}\)nên ta biển đổi như sau:
\(a+b+c=\frac{\sqrt{a}}{\sqrt{c+2b}}\sqrt{a\left(c+2b\right)}+\frac{\sqrt{b}}{\sqrt{a+2c}}\sqrt{b\left(a+2c\right)}+\frac{\sqrt{c}}{\sqrt{b+2a}}\sqrt{c\left(b+2a\right)}\)
Khi đó ta được:
\(\left(a+b+c\right)^2=\left[\frac{\sqrt{a}}{\sqrt{c+2b}}\sqrt{a\left(c+2b\right)}+\frac{\sqrt{b}}{\sqrt{a+2c}}\sqrt{b\left(a+2c\right)}+\frac{\sqrt{c}}{\sqrt{b+2a}}\sqrt{c\left(b+2a\right)}\right]^2\)
Theo bất đẳng thức Bunhiacopxiki ta được:
\(\left[\frac{\sqrt{a}}{\sqrt{c+2b}}\sqrt{a\left(c+2b\right)}+\frac{\sqrt{b}}{\sqrt{a+2c}}\sqrt{b\left(a+2c\right)}+\frac{\sqrt{c}}{\sqrt{b+2a}}\sqrt{c\left(b+2a\right)}\right]\)
\(\le\left(\frac{a}{c+2b}+\frac{b}{a+2c}+\frac{c}{b+2a}\right)\left[a\left(c+2b\right)b\left(a+2c\right)c\left(b+2a\right)\right]\)
Như vậy lúc này ta được:
\(\frac{a}{c+2b}+\frac{b}{a+2c}+\frac{c}{b+2a}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)
Vậy bài toán đã được chứng minh.
Ta viết lại bất đẳng thức trên thành:
\(\frac{a-b}{b}-\frac{a-b}{c}+\frac{c-a}{a}-\frac{c-a}{c}\ge\frac{\left(a-c\right)^2}{\left(a+b\right)\left(b+c\right)}\)
Hay: \(\frac{\left(a-b\right)\left(c-b\right)}{bc}+\frac{\left(c-a\right)^2}{ca}\ge\frac{\left(a-c\right)^2}{\left(a+b\right)\left(b+c\right)}\)
Tiếp tục khai triển và thu gọn ta được:
\(\Leftrightarrow b\left(c-a\right)^2\left(b^2+ab+bc\right)\ge a\left(a-b\right)\left(b-c\right)\left(a+b\right)\left(b+c\right)\)
\(\Leftrightarrow\left(b-ac\right)^2\ge0\)
Bất đẳng thức cuối cùng luôn đúng hay bài toán được chứng minh xong.
Ta co:
\(\text{ }\Sigma_{cyc}\frac{1}{a+7b}=\Sigma_{cyc}\frac{1}{a+b+b+...+b}\le\Sigma_{cyc}\frac{1}{64}\left(\frac{1}{a}+\frac{7}{b}\right)=\frac{1}{2}\)
TL
Xét vế phải (a+b)/(1+a+b)
= a/(1+a+b) + b/(1+a+b) mà a, b là các số thực dương (a,b > 0) => 1+a+b > 1+a ; 1+a+b > 1+b
=> a/ (1+a+b) + b/(1+a+b) < a / (1+a) + b/ (1+b) <=> (a+b)/(1+a+b) < a / (1+a) + b/ (1+b) (đpcm)
Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!