Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{1}{1794}\)>\(\dfrac{1}{1795^2}\)
\(\dfrac{1}{1794}\)>\(\dfrac{1}{1796^2}\)
\(\dfrac{1}{1794}\)>\(\dfrac{1}{1797^2}\)
.....................
\(\dfrac{1}{1794}\)>\(\dfrac{1}{2016^2}\)
\(\dfrac{1}{1794}\)>\(\dfrac{1}{2017^2}\)
\(\Leftrightarrow\)\(\dfrac{1}{1794}\)>\(\dfrac{1}{1795^2}\)+\(\dfrac{1}{1796^2}\)+\(\dfrac{1}{1797^2}\)+. . .+\(\dfrac{1}{2016^2}\)+\(\dfrac{1}{2017^2}\)
Ta có:
\(A=\frac{1}{2}+\frac{1}{2^2}+........+\frac{1}{2^{2017}}\)
\(\Rightarrow2A=1+\frac{1}{2}+.........+\frac{1}{2^{2016}}\)
Khi đó:
\(2A-A=\left(1+\frac{1}{2}+.....+\frac{1}{2^{2016}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{2017}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{2017}}\)
\(\Rightarrow A=\frac{2^{2017}-1}{2^{2017}}\)
\(\Rightarrow A< 1\)
VẬy: A < 1
Ta có: 1/2+1/2^2+...+1/2^2017<1/1.2+1/2.3+...+1/2016.2017
1/2<1/1.2
1/2^2<1/2.3
..........
1/2^2017<1/2016.2017
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(A< 1-\frac{1}{2016}\)
\(A< \frac{2015}{2016}\left(đpcm\right)\)
\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}\)
\(=\frac{2015}{2016}\)
\(\Rightarrow A< \frac{2015}{2016}\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\) ta có :
\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(A>\frac{1}{2}-\frac{1}{2017}\)
\(A>\frac{2015}{4034}\) \(\left(1\right)\)
Lại có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(A< 1-\frac{1}{2016}\)
\(A< \frac{2015}{2016}\) \(\left(2\right)\)
Từ (1) và (2) suy ra : \(\frac{2015}{4034}< A< \frac{2015}{2016}\) ( đpcm )
Vậy \(\frac{2015}{4034}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< \frac{2015}{2016}\)
Chúc bạn học tốt ~
\(\frac{1}{1975^2}+\frac{1}{1976^2}+...+\frac{1}{2017^2}< \frac{1}{1974.1975}+\frac{1}{1975.1976}+...+\frac{1}{2016.2017}\)
\(=\frac{1}{1974}-\frac{1}{1975}+\frac{1}{1975}-\frac{1}{1976}+...+\frac{1}{2016}-\frac{1}{2017}=\frac{1}{1974}-\frac{1}{2017}< \frac{1}{1974}\)