Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
n⋮3n⋮3
Vậy ta có đpcm.
- Vì A là tích của n số nguyên tố đầu tiên nên A chia hết cho 2 và A không chia hết cho 4 (*)
- Giả sử A+1 là số chính phương . Đặt A+1 = m2 (m∈N)
Vì A chẵn nên A+1 lẻ => m2 lẻ => m lẻ.
Đặt m = 2k+1 (k∈N).
Ta có m2 = =(2k+1)2=4k2 + 4k + 1
=> A+1 = 4k2 + 4k + 1
=> A = 4k2 + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*)
Vậy A+1 không là số chính phương
- Ta có: A = 2.3.5… là số chia hết cho 3 (n>1)
=> A-1 có dạng 3x+2. (x\(\in\)N)
Vì không có số chính phương nào có dạng 3x+2 nên A-1 không là số chính phương .
Vậy nếu A là tích n số nguyên tố đầu tiên (n>1) thì A-1 và A+1 không là số chính phương (đpcm)
Ta chứng minh p+1 là số chính phương:
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N)
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ.
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*)
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương
Ta chứng minh p-1 là số chính phương:
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2.
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương .
Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương (đpcm)