Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi bạn
Nếu ta thử n=0 thôi ta sẽ có:
\(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(-2\right)^2-\left(-7\right)^2=4-49=-45\) không chia hết cho 7 :(
Bài 3:
a: Ta có: \(\left(n+2\right)^2-\left(n-2\right)^2\)
\(=\left(n+2+n-2\right)\left(n+2-n+2\right)\)
\(=4\cdot2n=8n⋮8\)
b: Ta có: \(\left(n+7\right)^2-\left(n-5\right)^2\)
\(=\left(n+7-n+5\right)\left(n+7+n-5\right)\)
\(=12\cdot\left(2n+2\right)\)
\(=24\left(n+1\right)⋮24\)
(7n - 2)2 - (2n - 7)2
= (7n - 2 + 2n - 7).(7n - 2 - 2n + 7)
= (9n - 9).(9n + 5)
= 9.(n - 1).(9n + 5) chia hết cho 9 ( đpcm)
Ta có: (7n-2)2 -(2n-7)2 = (7n-2 + 2n-7) .(7n-2 - 2n-7)
= (9n-9) . ((5n+(-9))
Ta có n là số nguyên, nếu ta thế 1 số nguyên nào vào hằng đẳng thức trên thì chắc chắn kết quả sẽ chia hết cho 9
Vd : ( 9.7-9).((5.7+(-9))= 54.26= 1404 chia hết cho 9 => (7n-2)2 -(2n-7)2 luôn chia hết cho 9 với mọi giá trị của n là giá trị nguyên .
a: \(=\left(4n-7-5\right)\left(4n-7+5\right)\)
\(=\left(4n-12\right)\left(4n-2\right)\)
\(=8\left(n-3\right)\left(2n-1\right)⋮8\)
\(A=\left(n-2\right)\left(n-3\right)\left(n+1\right)\left(2n+1\right)\)
Vì n-2;n-3 là hai số liên tiếp
nên (n-2)(n-3) chia hết cho 2
=>A chia hết cho 2
TH1: n=3k
=>n-3=3k-3 chia hết cho 3
TH2: n=3k+1
=>2n+1=6k+2+1=6k+3 chia hết cho 3
TH3: n=3k+2
=>n+1=3k+3 chia hết cho 3
=>A chia hết cho 6
a) Ta có: ( 3 n - 1 ) 2 - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).
Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) Ta có: 100 - ( 7 n + 3 ) 2 =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.
Xét n = 3p => A = 3p(6p+7)(21p+1) chia hết cho 3 vì 3p chia hết cho 3.
p chẵn => 3p chia hết cho 6 => A chia hết cho 6
p lẻ => 21p lẻ => 21p + 1 chẵn => A chia hết cho 6
Xét n = 3p+1 => A = (3p+1)(6p+9)(21n+8) chia hết cho 3 vì 6p + 9 chia hết cho 3.
p chẵn => 21n+8 chẵn=> A chia hết cho 6.
p lẻ => 3p+1 chẵn => A chia hết cho 6.
Xét n = 3p+2 => A= (3p+2)(6p+11)(21n+15) chia hết cho 3 vì 21n+15 chia hết cho 3.
p chẵn => 3p + 2 chia hết cho 2 => A chia hết cho 6.
p lẻ => 21p lẻ => 21p + 15 chẵn => A chia hết cho 6.
Vậy A luôn luôn chia hết cho 6.
Xin phép được sửa đề :3
Ta có :
\(\left(7n-2\right)^2-\left(2n-7\right)^2\)
\(=\left(7n-2+2n-7\right)\left(7n-2-2n+7\right)\)
\(=\left(9n-9\right)\left(5n+5\right)\)
\(=45\left(n-1\right)\left(n+1\right)\)
Vì \(45⋮9\) \(\Rightarrow45\left(n-1\right)\left(n+1\right)⋮9\)
Vậy \(\left(7n-2\right)^2-\left(2n-7\right)^2\) chia hết cho 9 ( đpcm )
\(A=\left(7n-2\right)^2-\left(2n-7\right)^2\)
xét n = 1 ta có \(A=5^2-\left(-5\right)^2=0⋮7\)
xét n = 2 ta có \(A=12^2-\left(-3\right)^2=135⋮̸7\)
=> đề bài sai