K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

Ta có : \(1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-......-\frac{1}{2^{10}}\)

\(=\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-.....-\frac{1}{2^{10}}< \frac{1}{2}\) (đề sai)

6 tháng 2 2020

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\\ \frac{1}{3^2}< \frac{1}{2\cdot3}\\ \frac{1}{4^2}< \frac{1}{3\cdot4}\\ ...\\ \frac{1}{n^2}< \frac{1}{\left(n-1\right)\cdot n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{\left(n-1\right)\cdot n}\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}< 1\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\left(\text{với }n\in N;n\ge2\right)\)

6 tháng 2 2020

Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{\left(2n-2\right).2n}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n-2}-\frac{1}{2n}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{2n}\)

\(\Rightarrow A=\frac{1}{4}-\frac{1}{4n}\)

\(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}.\)

\(\Rightarrow A< \frac{1}{4}\left(đpcm\right)\left(n\in N;n\ge2\right).\)

Chúc bạn học tốt!

25 tháng 7 2019

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo nhé!

13 tháng 5 2016

Nhận xét:

\(\frac{1}{2^2}<\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3^2}<\frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)

....

\(\frac{1}{10^2}<\frac{1}{10\times11}=\frac{1}{10}-\frac{1}{11}\)

Tính tổng ta có:

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}<1\)

13 tháng 5 2016

đặt A=1/1.2+1/2.3+...+1/9.10

B=1/2^2+1/3^2+...+1/10^2

ta có:B=1/2^2+1/3^2+...+1/10^2<A=1/1.2+1/2.3+...+1/9.10

mà A=1/1.2+1/2.3+...+1/9.10

=1-1/2+1/2-1/3+...+1/9-1/10

=1-1/10<1

=>A<B<1

=>A<1

Me ngu số học lắm! Tui chỉ giỏi hình thôi

25 tháng 2 2020

Áp dụng bđt Cauchy - Schwarz dạng Engel:

\(\frac{1}{2x}+\frac{1}{2y}\ge\frac{4}{2\left(x+y\right)}=\frac{2}{x+y}\)

Dấu "=" xảy ra khi x = y > 0

25 tháng 2 2020

thanks