K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

Đặt \(A=x\left(x-2\right)\left(x+a\right)\left(x+2a\right)\)

\(=x\left(x+a\right)\left(x-a\right)\left(x+2a\right)\)

\(=\left(x^2+ax\right)\left(x^2+ax-2a^2\right)\)

Đặt \(x^2+ax=t\)

\(\Rightarrow A=t\left(t-2a^2\right)\)

\(\Rightarrow\)\(x\left(x-2\right)\left(x+a\right)\left(x+2a\right)+a^4=t\left(t-2a^2\right)+a^4\)

\(=a^4-2a^2t+t^2=\left(a^2-t\right)^2=\left(a^2-x^2-ax\right)^2\)(là bình phương của 1 đa thức)

22 tháng 2 2021

giúp mình với đang vội

NV
22 tháng 2 2021

\(x\left(x+a\right)\left(x-a\right)\left(x+2a\right)+a^4\)

\(=\left(x^2+ax\right)\left(x^2+ax-2a^2\right)+a^4\)

\(=\left(x^2+ax\right)^2-2a^2\left(x^2+ax\right)+a^4\)

\(=\left(x^2+ax-a^2\right)^2\) (đpcm)

 

\(\left(x-a\right)\left(x+a\right)\left(x+2a\right)+a^4\)

\(=\left(x^2-a^2\right)\left(x+2a\right)+a^4\)

\(=\left(x^3+2ax^2-a^2x+2a^3\right)+a^4\)

8 tháng 8 2017

a,A=(x+1)(x+2)(x+3)(x+4)+1

=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)

đặt x2+5x+5=a ta có

A=(a-1)(a+1)+1

=a2-1+1=a2

thay a =x2+5x+5 ta có A=(x2+5x+5)2

vì x nguyên nên x2+5x+5 nguyên 

vậy A là bình phương của 1 số nguyên với mọi x nguyên

b,B=x4-4x3-2x2+12x+9

=x4+x3-5x3-5x2+3x2+3x+9x+9

=x3(x+1)-5x2(x+1)+3x(x+1)+9(x+1)

=(x+1)(x3-5x2+3x+9)

=(x+1)(x3+x2-6x2-6x+9x+9)

=(x+1)[x2(x+1)-6x(x+1)+9(x+1)]

=(x+1)(x+1)(x2-6x+9)

=(x+1)2(x+3)2

vì x nguyên nên x+1 nguyên;x+3 nguyên

vậy B là bình phương củ một số nguyên với mọi x nguyên

26 tháng 6 2015

\(P=\left(x^2+mx+1\right)^2\) hoặc \(P=\left(x^2+mx-1\right)\)do hệ số \(x^4\)là 1; hệ số tự do là 1

+Với \(P=\left(x^2+mx+1\right)^2=x^4+2mx^3+\left(m^2+2\right)x^2+2mx+1=x^4+ax^3+bx^2-8x+1\)\(\Rightarrow2m=-8;a=2m;b=m^2+2\)

\(\Rightarrow m=-4;a=-8;b=18\)

+Với 

\(P=\left(x^2+mx-1\right)^2=x^4+2mx^3+\left(m^2-2\right)x^2-2mx+1\)

Làm tương tự được m = 4; a = 8; b = 14