Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\right):\left(\dfrac{x+y+2xy}{1-xy}+1\right)\)
Điều kiện : \(xy\ge0\) hoặc \(xy\le0\) ; \(xy\ne1\); \(x\ge0\);\(y\ge0\)
\(P=\left(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}\right):\left(\dfrac{x+2xy+y+1-xy}{1-xy}\right)\)
\(P=\left(\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}\right):\left(\dfrac{x+xy+y+1}{1-xy}\right)\)
\(P=\left(\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\right):\left(\dfrac{x\left(1+y\right)+\left(y+1\right)}{1-xy}\right)\)
\(P=\left(\dfrac{2\sqrt{x}\left(1+y\right)}{1-xy}\right):\left(\dfrac{\left(1+y\right)\left(x+1\right)}{1-xy}\right)\)
\(P=\dfrac{2\sqrt{x}\left(1+y\right)}{1-xy}.\dfrac{1-xy}{\left(1+y\right)\left(x+1\right)}\)
\(P=\dfrac{2\sqrt{x}}{x+1}\)
b) ta có :\(x=\dfrac{2}{2+\sqrt{3}}=\dfrac{2\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\dfrac{4-2\sqrt{3}}{4-3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
thay \(x=\left(\sqrt{3}-1\right)^2\) vào biểu thức P
ta được : \(P=\dfrac{2\sqrt{\left(\sqrt{3}-1\right)^2}}{\left(\sqrt{3}-1\right)^2+1}\)
\(P=\dfrac{2\left|\sqrt{3}-1\right|}{4-2\sqrt{3}+1}=\dfrac{2\sqrt{3}-2}{5-2\sqrt{3}}\)
\(P=\dfrac{\left(2\sqrt{3}-2\right)\left(5+2\sqrt{3}\right)}{\left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right)}=\dfrac{10\sqrt{3}+12-10-4\sqrt{3}}{25-12}\)
\(P=\dfrac{6\sqrt{3}+2}{13}\)
c) để P\(\le\)1 thì \(\dfrac{2\sqrt{x}}{x+1}\le1\)
\(\Leftrightarrow\dfrac{2\sqrt{x}}{x+1}-1\le0\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-x-1}{x+1}\le0\)
\(\Leftrightarrow\dfrac{-\left(x-2\sqrt{x}+1\right)}{x+1}\le0\)
\(\Leftrightarrow\dfrac{-\left(x-1\right)^2}{x+1}\le0\)
Vì \(-\left(x-1\right)^2\le0\) nên x + 1 \(\ge\) 0
\(\Leftrightarrow\) x \(\ge\) -1
đúng thì cho xin 1 like nha
\(\Leftrightarrow\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-1}}{y}\le1\)
Mà \(x=\left(x-1\right)+1\ge2\sqrt{x-1}\)
\(\Rightarrow\frac{\sqrt{x-1}}{x}\le\frac{\sqrt{x-1}}{2\sqrt{x-1}}=\frac{1}{2}\)
Tương tự: \(\frac{\sqrt{y-1}}{y}\le\frac{1}{2}\)
Vậy \(\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-1}}{y}\le1\left(đpcm\right)\)
Theo bất đẳng thức Cô-Si ta có \(xy=\left(x-1\right)y+y\ge2\sqrt{\left(x-1\right)y\cdot y}=2y\sqrt{x-1}.\)
Tương tự \(xy=\left(y-1\right)x+x\ge2\sqrt{\left(y-1\right)x\cdot x}=2x\sqrt{y-1}.\)
Cộng hai bất đẳng thức lại cho ta \(2xy\ge2y\sqrt{x-1}+2x\sqrt{y-1}\Leftrightarrow xy\ge x\sqrt{y-1}+y\sqrt{x-1}.\) (ĐPCM).
Áp dụng bất đẳng thức Cô si ta có
\(\sqrt{y-1}=\sqrt{\left(y-1\right).1}\le\frac{y-1+1}{2}=\frac{y}{2}\)
=>\(x\sqrt{y-1}\le\frac{xy}{2}\)
Áp dụng BĐT cô si ta có
\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)
=>\(y\sqrt{x-1}+x\sqrt{y-1}\le\frac{xy}{2}+\frac{xy}{2}=xy\)
Dấu ''='' xảy ra <=>x=y=1
Đặt \(\left(a,b,c\right)=\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\).
Xét 4 số m, n, p, q. Ta sẽ chứng minh \(\left(m+n+p+q\right)^2\le4\left(m^2+n^2+p^2+q^2\right)\) (*)
Thật vậy:
(*) \(\Leftrightarrow2\left(mn+np+pq+qm+mp+nq\right)\le3\left(m^2+n^2+p^2+q^2\right)\)
\(\Leftrightarrow\left(m-n\right)^2+\left(n-p\right)^2+\left(p-q\right)^2+\left(q-m\right)^2+\left(m-p\right)^2+\left(n-q\right)^2\ge0\) (luôn đúng).
Từ đó: \(\left(\sqrt{x}+\sqrt{y}+2\sqrt{z}\right)^2=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{z}\right)^2\le4\left(x+y+z+z\right)=4\left(x+y+2z\right)\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}+2\sqrt{z}\le2\sqrt{x+y+2z}\)
\(\Leftrightarrow\sqrt{\frac{xy}{x+y+2z}}=\frac{\sqrt{xy}}{\sqrt{x+y+2z}}\le\frac{2\sqrt{x}\sqrt{y}}{\sqrt{x}+\sqrt{y}+2\sqrt{z}}=\frac{2ab}{a+b+2c}\le\frac{1}{2}ab\frac{4}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{2}ab\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Tương tự, ta có:
\(\sum\sqrt{\frac{xy}{x+y+2z}}\le\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{bc}{c+a}\right)=\frac{1}{2}\sum a=\frac{1}{2}\)
Áp dụng BĐT AM-GM, Ta có
\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\Rightarrow yz\sqrt{x-1}\le\dfrac{xyz}{2}\)
Mà \(xz\sqrt{y-2}\le\dfrac{xz\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\)
\(yx\sqrt{z-3}\le yx.\dfrac{3+z-3}{2\sqrt{3}}=\dfrac{xyz}{2\sqrt{3}}\)
\(\Rightarrow\dfrac{xy\sqrt{x-1}+xz\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)
Nếu để ý,bài này Cô si "ngược" là ra =))
Ta có: \(\sqrt{y-1}=\sqrt{1\left(y-1\right)}\le\frac{1+y-1}{2}=\frac{y}{2}\)
Tương tự: \(\sqrt{x-1}\le\frac{x}{2}\)
Do đó: \(x\sqrt{y-1}+y\sqrt{x-1}\le x.\frac{y}{2}+y.\frac{x}{2}=\frac{xy}{2}+\frac{xy}{2}=\frac{2xy}{2}=xy^{\left(đpcm\right)}\)
"=" xảy ra <=> y-1=1 và x-1=1 <=> x=y=2 (thỏa mãn)