\(x,y\in Q\) M=\(\frac{3\left(x^2+1\right)+x^2y^2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2021

\(M=\frac{3\left(x^2+1\right)+x^2y^2+y^2-2}{\left(x+y\right)^2+5}\)

\(=\frac{3\left(x^2+1\right)+y^2\left(x^2+1\right)-2}{\left(x+y\right)^2+5}\)

\(=\frac{\left(x^2+1\right)\left(3+y^2\right)-2}{\left(x+y\right)^2+5}\)

Ta có : x2 + 1 ≥ 1 ∀ x

3 + y2 ≥ 3 ∀ y

=> ( x2 + 1 )( 3 + y2 ) ≥ 3 ∀ x, y

=> ( x2 + 1 )( 3 + y2 ) - 2 ≥ 1 > 0 ∀ x, y (1)

Lại có ( x + y )2 + 5 ≥ 5 > 0 ∀ x, y (2)

Từ (1) và (2) => \(\frac{\left(x^2+1\right)\left(3+y^2\right)-2}{\left(x+y\right)^2+5}>0\)

hay M luôn dương ( đpcm )

Ta có :

\(M=\frac{3\left(x^2+1\right)+x^2y^2+y^2-2}{\left(x+y\right)^2+5}\)

\(=\frac{3x^2+3+x^2y^2+y^2-2}{\left(x+y\right)^2+5}\)

\(=\frac{3x^2+x^2y^2+y^2+1}{\left(x+y\right)^2+5}\)

Ta xét : \(\hept{\begin{cases}3x^2\ge0\\x^2y^2\ge0\\y^2\ge0\end{cases}\Rightarrow}3x^2+x^2y^2+y^2\ge0\Rightarrow3x^2+x^2y^2+y^2+1>0\)  (1)

và \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\5>0\end{cases}\Rightarrow\left(x+y\right)^2+5>0}\) (2)

Từ (1) , (2) \(\Rightarrow\frac{3x^2+x^2y^2+y^2+1}{\left(x+y\right)^2+5}>0\) hay \(M>0\)

23 tháng 3 2016

Xét tử và mẫu của phân số này.

Ta thấy mẫu số là (x+y)^2+5 có (x+y)^2>=0 

                                               5 > 0

=> (x+y)^2+5>0

Ta thấy tử số là 3(x^2+1)+x^2*y^2+y^2-2 có

+) x^2+1>=1 ( do x^2>=0) => 3(x^2+1)>=3

+) x^2*y^2 >=0

+)y^2 >=0

Từ các điều trên => 3(x^2+1)+x^2*y^2+y^2>=3

                        => 3(x^2+1)+x^2*y^2+y^2-2>=1>0

=> M dương

Vậy M luôn dương với mọi x và y

8 tháng 2 2019

Hiển nhiên mẫu lớn hơn 0,ta chứng minh tử >0 là xong ^^

\(3\left(x^2+1\right)+x^2y^2+y^2-2\)

\(=3x^2+3+x^2y^2+y^2-2\)

\(=3x^2+x^2y^2+y^2+1>0\rightarrowđpcm\)

21 tháng 2 2020

ko hiểu ,mày bị điên à . Anh thách mày giải được đấy !!!!  Giải được cho tiền nhé !!!! Bye .

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

25 tháng 7 2016

\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)

=>(2x-y)(2y-z)(2z-x)=xyz

=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2

=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2

(3-x2)(3-y2)(3-z2)

=3x2y2+3y2z2+3z2x2-x2y2z2

sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2

\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)

=>(2x-y)(2y-z)(2z-x)=xyz

=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2

=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2

(3-x2)(3-y2)(3-z2)

=3x2y2+3y2z2+3z2x2-x2y2z2

sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2

Bài 1: Tìm x, y, z biết: a. \(8x=3y\); \(5y=6z\) và \(2x+y-z=-34\)b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)c. \(3^x+4^x=5^x\left(x\in N\right)\)d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)Bài 2: a. Chứng minh...
Đọc tiếp

Bài 1: Tìm x, y, z biết: 

a. \(8x=3y\)\(5y=6z\) và \(2x+y-z=-34\)

b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)

c. \(3^x+4^x=5^x\left(x\in N\right)\)

d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)

e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)

g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)

Bài 2: 

a. Chứng minh rằng: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2011^2}>\frac{1}{2011}\)

b. Cho \(\left(5a_1+7b_1\right)^{2010}+\left(5a_2+7b_2\right)^{2012}+\left(5a_3+7b_3\right)^{2014}\le0\) và \(b_1,b_2,b_3\ne0,b_1+b_2+b_3\ne0\) . Chứng minh rằng: \(\frac{a_1+a_2+a_3}{b_1+b_2+b_3}=-1\frac{2}{5}\)

Bài 3: 

a. Cho \(\frac{x}{y}=\frac{z}{t}\) . Chứng minh rằng \(\frac{x^2-y^2}{z^2-t^2}=\left(\frac{y-x}{t-z}\right)^2=\frac{xy}{zt}\)

b. Độ dài 3 đường cao của 1 tam giác tỉ lệ với 3; 5; 6. Tính độ dài 3 cạnh tương ứng của tam giác đó, biết rằng chu vi của tam giác là  42cm 

c. Chứng minh rằng \(2^{x+4}-3^x-3^{x+2}-2^x\) chia hết cho 30 với x la số tựu nhiên lớn hơn hoặc bằng 1

 

0
9 tháng 10 2016

a.  x=1      y= -3

b.  x=5      y=7/2

c.  x= -1    y= -1/2

d.  x=1/4   y= 1/4

16 tháng 10 2016

a) x = 1    

y = -3

b) x = 5

y = 7/2

c) x = -1

y = -1/2

d) x = 1/4 

y = 1/4

nha bn

2 tháng 12 2019

c) \(\left|2x-1\right|+\left|y+5\right|=0\)

Ta có:

\(\left\{{}\begin{matrix}\left|2x-1\right|\ge0\\\left|y+5\right|\ge0\end{matrix}\right.\forall x.\)

\(\Rightarrow\left|2x-1\right|+\left|y+5\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|2x-1\right|=0\\\left|y+5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-1=0\\y+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=1\\y=0-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=-5\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\frac{1}{2};-5\right\}.\)

Chúc bạn học tốt!

15 tháng 8 2017

Nhiều quá bạn ơi ( Hhôm nào cũng thấy đăng 6,7 câu )

15 tháng 8 2017

giúp người đi bạn