\(\ne0\)

ta luôn có bất đẳng thức sau:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

Ta co \(\left(a-b\right)^2\ge0\)\(\forall_{a,b}\in R\)

=> \(a^2-2ab+b^2\ge0\)

=>\(a^2+2ab+b^2\ge4ab\)

=>\(\left(a+b\right)^2\ge4ab\)

=>\(\left(\frac{a+b}{2}\right)^2\ge ab\)

31 tháng 12 2017

dau bang xay khi khi a=b

22 tháng 3 2021

1) a2 - ab + b2 ≥ 0

<=> ( 4a2 - 4ab + b2 ) + 3b2 ≥ 0

<=> ( 2a - b )2 + 3b2 ≥ 0 ( đúng ∀ a,b )

Vậy bđt ban đầu được chứng minh

Đẳng thức xảy ra <=> a = b = 0

2) a2 - ab + b2 ≥ 1/4( a + b )2

<=> 4a2 - 4ab + 4b2 ≥ a2 + 2ab + b2

<=> 4a2 - 4ab + 4b - a2 - 2ab - b2 ≥ 0

<=> 3a2 - 6ab + 3b2 ≥ 0

<=> a2 - 2ab + b2 ≥ 0

<=> ( a - b )2 ≥ 0 ( đúng ∀ a,b )

Vậy bđt ban đầu được chứng minh

Đẳng thức xảy ra <=> a = b 

8 tháng 5 2016

Hoàn toàn chính xác

13 tháng 6 2017

PP: Dùng tương đương thần chưởng !!!
Ý tưởng : Chứng minh 1/\sqrt{1+a^2} + 1/\sqrt{1+b^2} >= 2/\sqrt{1+ab} >= 2/\sqrt{ 1+ (a+b)^2/4 } 
._. Bạn biết đăng hình ảnh lên đây không mình  làm  ra rùi chụp cho (:

13 tháng 6 2017

BĐT trên chỉ đúng với ab=>1 mà lm gì có ở đề 

19 tháng 7 2017

có 1 cách mà xài SOS xấu lắm chơi ko :))

25 tháng 7 2017

tìm thấy rồi Tổng hợp kỹ thuật chứng minh bất đẳng thức-Tập 2: Luyện thi học sinh giỏi toán - Tổng hợp - Google Sách

1 tháng 6 2018

\(VT=\frac{t}{\left(m-1\right)\left(m^2+m+1\right)}-\frac{m}{\left(t-1\right)\left(t^2+t+1\right)}=\frac{t}{-t\left(m^2+m+1\right)}-\frac{m}{-m\left(t^2+t+1\right)}\)\(=\frac{-1}{m^2+m+1}+\frac{1}{t^2+t+1}=\frac{-t^2-t-1+m^2+m+1}{\left(m^2+m+1\right)\left(t^2+t+1\right)}\)

\(=\frac{\left(m-t\right)\left(m+t\right)+m-t}{m^2t^2+mt\left(m+t\right)+m^2+t^2+mt+\left(m+t\right)+1}\)

\(=\frac{2\left(m-t\right)}{m^2t^2+\left(m^2+t^2+2mt\right)+2}=\frac{2\left(m-t\right)}{m^2t^2+\left(m+t\right)^2+2}=\frac{2\left(m-t\right)}{m^2t^2+3}=VP\)

16 tháng 8 2016

Chứng minh bằng biến đổi tương đương : 

\(\frac{a+b}{2}\ge\sqrt{ab}\) \(\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge\) (luôn đúng)

Bđt cuối luôn đúng nên bđt ban đầu được chứng minh.

Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\Leftrightarrow a=b\) (a,b không âm)

12 tháng 6 2020

Vì abc = 1 nên \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)\(=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ca+c+1}\)

\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)(*)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức và áp dụng đẳng thức (*), ta được:

\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)\(=\frac{\left(\frac{a}{ab+a+1}\right)^2}{a}+\frac{\left(\frac{b}{bc+b+1}\right)^2}{b}+\frac{\left(\frac{c}{ca+c+1}\right)^2}{c}\)

\(\ge\frac{\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2}{a+b+c}=\frac{1}{a+b+c}\)

Đẳng thức xảy ra khi a = b = c = 1