Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(n^3+n+2\)
\(=n^3-n+2n+2\)
\(=n\left(n^2-1\right)+2\left(n+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2-n+2\right)\) có ít nhất \(3Ư\ne1\))
\(\Rightarrow n^3+n+2\) là hợp số với \(\forall n\in N^{\times}\)
Bài 1 A=xyz+xz-zy-z+xy+x-y-1
thay các gtri x=-9, y=-21 và z=-31 vào là đc
=> A=-7680
Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
b) 49n+77n-29n-1
=\(49^n-1+77^n-29^n\)
=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)
=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))
=> tích trên chia hết 48
c) 35x-14y+29-1=7(5x-2y)+7.73
=7(5x-2y+73) tích trên chia hết cho 7
=. ĐPCM
Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z
=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz
=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)
=�+��+1��+�+1=xy+x+1x+xy+1
=1=1
Ta có A= 5n^3+15n^2+10n=5n^3+5n^2 +10n62+10n
=5n^29 (n+1)+10n (n+1) =(n+1).(5n^2+10n)
5n (n+1).(n+2)
do n (n=1) (n+2)chia hết cho 6
suy ra Achia hết cho 30(n thuộc z)
\(\left[...\right]=\left[n+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\right)\right]=\left[n+1-\frac{1}{n+1}\right]=\left[n+\frac{n}{n+1}\right]\)
Do n dương nên \(\frac{n}{n+1}< 1\)\(\Rightarrow\)\(\left[n+\frac{n}{n+1}\right]=n\)
khai triển ta được 4n2+20n+30 = 2(2n2+10n+15)
do 2(2n2+10n+15) luôn chẳng do đó nó tận cùng bằng 0; 2; 4; 6; 8 không thể tận cùng là 3
10^n tan cung la 1 ...
18n - 1 chia het cho 9, tan cung la -1 ...
=> 1 + (-1) = 0 chia het cho 27
Hieu thi tu lam
Khong hieu thi ke :D
\(n^3+n+2\)
\(=n^3-n+2n+2\)
\(=n.\left(n^2-1\right)+2.\left(n+1\right)\)
\(=n.\left(n-1\right).\left(n+1\right)+2.\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2-n+2\right)\)
\(\Rightarrow n^3+n+2\)là hợp số với mọi \(n\inℕ^∗\)
\(\Rightarrowđpcm\)
Ta có: \(n^3+n+2\)
\(=n^3-n+2n+2\)
\(=n\left(n^2-1\right)+2\left(n+1\right)\)
\(=n\left(n+1\right)\left(n-1\right)+2\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2-n\right)+2\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2-n+2\right)\)
Ta có: \(n^2-n+2=n^2-n+\frac{1}{4}+\frac{7}{4}=\left(n-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
Lại có: \(n^2-n=n\left(n-1\right)\)(tích 2 số tự nhiên liên tiếp chẵn nên \(n^2-n+2\)chẵn)
\(\Rightarrow n^2-n+\frac{1}{2}\)là số dương chẵn
Mà \(n+1>1\)(Vì n dương) nên \(\left(n+1\right)\left(n^2-n+2\right)\)là số tự nhiên chẵn
Vậy \(\left(n+1\right)\left(n^2-n+2\right)\)là hợp số
hay \(n^3+n+2\)là hợp số