Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(5\left(n^2+n+2\right)⋮5\)
a) thay 2k+1 vào biểu thức ta có
a)=4k^2+4k+1+8k+4+3
=4k(k+1) + 8k +8
có: k(k+1) là 2 số nguyên liên tiếp => chia hết cho 2 => 4k(k+1) chia hết cho 8
có: 8k;8 chia hết 8
=>n^2+4n+3 chia hết cho 8
b.Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath
Em tham khaoe link trên.
b: 9^2n có chữ số tận cùng là 1
=>9^2n+14 có chữ số tận cùng là 5
=>9^2n+14 chia hết cho 5
c: n(n^2+1)(n^2+4)
=n(n-2)(n-1)(n+1)(n+2)+10n^3
Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp
nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5
=>n(n^2+1)(n^2+4) chia hết cho 5
Có: (2 - n) ( n2 - 3n + 1) + n(n2 + 12) + 8
= 2n2 - 6n + 2 - n3 + 3n2 - n + n3 + 12n + 8
= 5n2 + 5n + 10
= 5(n2 + n + 2). Do 5 chia hết cho 5 => 5(n2 + n + 2) chia hết cho 5
hay (2 - n) ( n2 - 3n + 1) + n(n2 + 12) + 8 chia hết cho 5 với mọi n thuộc Z.
=> đpcm