K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2017

chứng minh với mọi n thuộc N* và m chẵn thì m^2^n-1 chia hết 2^ (n+2)

4 tháng 11 2016

a ) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right).4\)

\(=8\left(n+1\right)\) chia hết cho 8

\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)

b ) \(\left(2n+1\right)^2-1\)

\(=\left(2n+1-1\right)\left(2n+1+1\right)\)

\(=2n.\left(2n+2\right)\)

\(=2.2n\left(n+1\right)\)

\(=4n\left(n+1\right)\)

Ta có : \(n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)

\(\Rightarrow4n\left(n+1\right)⋮8\).

c ) Gọi 2 số lẻ liên tiếp là \(2n+1\)\(2n-1\)

Ta có : \(\left(2n+1\right)^2-\left(2n-1\right)^2\)

\(=\left(2n+1+2n-1\right)\left(2n+1-2n+1\right)\)

\(=4n.2\)

\(=8n\) chia hết cho 8

Vậy .........

12 tháng 11 2017

Ta thấy 2003^n+1 và 2003^n+2 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2

=> (2003^n+1) x (2003^n+2) chia hết cho 2 (1)

Xét 2003^n x (2003^n+1) x (2003^n+2)

Ta thấy 2003^n;2003^n+1 và 2003^n+2 là 2 số tự nhiên liên tiếp nên có 1 sô chia hết cho 3

=> 2003^n x (2003^n+1) x (2003^n+2) chia hết cho 3 

Mà 2003^n ko chia hết cho 3

=> (2003^n+1) x (2003^n+2) chia hết cho 3 (2)

Từ (1) và (2) => (2003^n+1) x (2003^n+2) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tó cùng nhau )

k mk nha

19 tháng 11 2016

3^n+2=3^n .3^2=9.3^2

2^n+2= 2^n. 2^2= 4.2^2

=>3^n+2- 2^n+2 +3^n- 2^n=9.3^n -4.2^n +3^n -2^n

=3^n.(9+1) -2^n.(4+1)=10.3^n -2^n.5

Vì:10.3^n chia hết cho 10 (mình ko bít viết dấu chia hết)

2^n chia hết cho 2; 5 chia hết cho5; 2,5 là số nguyên tố cùng nhau,n>0

=>2^n.5 chia hết cho 10 

dạy mình viết dấu chia hết đi!!!!!!!!!!!!!!!!

23 tháng 10 2017

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^n.27+3^n.3+2^n.8+2^n.4\)

\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)

\(=3^n.30+2^n.12⋮6\left(dpcm\right)\)

5 tháng 10 2019

hello minh anh ak 

5 tháng 10 2019

bitch

9 tháng 8 2019

A=\(2^{n+1}+2^{n+2}+....+2^{n+100}\)

\(=2^n\left(2+2^2+2^3+....+2^{100}\right)\)

\(2^n\left[\left(2+2^2+2^3+2^4\right)+....+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\right]⋮30\)

\(\Rightarrow A⋮30\forall n\in N\)

9 tháng 8 2019

2n+1 + 2n+2 + ... + 2n+99 + 2n+100

= (2n+1 + 2n+2 + 2n+3 + 2n+4) + ... + (2n+97 + 2n+98 + 2n+99 + 2n+100)

= 2n+1(1 + 2 + 22 + 23) + ... + 2n+97(1 + 2 + 22 + 23)

= 2n.2.15 + ... + 2n.297.15

= 2n.30 + ... + 2n.296.30

= 30(2n + ... + 2n+96\(⋮\) 30 (đpcm)