K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

Đặt un = 3n3 + 15n

+ Với n = 1 ⇒ u1 = 18 ⋮ 9.

+ Giả sử với n = k ≥ 1 ta có: uk = (3k3 + 15k) ⋮ 9

⇒ uk+1 = 3(k + 1)3 + 15(k + 1 )

              = 3(k3 + 3k2 + 3k + 1) + 15k + 15

              = (3k3 + 15k) + 9k2 + 9k + 18

              = (3k3 + 15k) + 9(k2 + k + 2)

              = uk + 9(k2 + k + 2)

Mà uk ⋮ 9 và 9(k2 + k + 2) ⋮ 9

⇒ uk + 1 ⋮ 9.

Vậy un = 3n3 + 15n ⋮ 9 ∀n ∈ N*

9 tháng 4 2017

a) Với n = 1, ta có:

13n – 1 = 131 – 1 = 12 ⋮ 6

Giả sử: 13k - 1 ⋮ 6 với mọi k ≥ 1

Ta chứng minh: 13k+1 – 1 chia hết cho 6

Thật vậy:

13k+1 – 1 = 13k+1 – 13k+ 13k -1 = 12.13k +13k – 1

Vì : 12.13k ⋮ 6 và 13k – 1 ⋮ 6

Nên : 13k+1 – 1 ⋮ 6

Vậy 13n -1 chia hết cho 6

b) Với n = 1, ta có: 3n3 + 15n = 18 ⋮ 9

Giả sử: 3(k + 1)3 + 15(k + 1) Ta chứng minh: 3(k + 1)3 + 15(k + 1) ⋮ 9

Thật vậy:

3(k + 1)3 + 15(k + 1) = 3. (k3 + 3k2 + 3k + 1) + 15(k + 1)

= 3k3 + 9k2 + 9k + 15k + 18

= 3k3 + 15k + 9(k2 + k + 2)

Vì 3(k + 1)3 + 15(k + 1) (giả thiết quy nạp) và 9(k2 + k + 2) ⋮ 9

Nên: 3(k + 1)3 + 15(k + 1) ⋮ 9

Vậy: 3n3 + 15n chia hết cho 9 với mọi n ∈ N*


30 tháng 3 2018

11 tháng 4 2019

Đặt un = 13n – 1

+ Với n = 1 thì u1 = 13 – 1 = 12 chia hết 6

+ Giả sử: uk = 13k – 1 chia hết cho 6.

⇒ uk + 1 = 13k + 1 – 1

              = 13k+1 + 13k – 13k – 1

              = 13k(13 – 1) + 13k – 1

              = 12.13k + uk.

Mà 12.13k ⋮ 6; uk ⋮ 6.

⇒ uk + 1 ⋮ 6.

⇒ un ⋮ 6 với mọi n ∈ N.

hay 13n – 1 ⋮ 6 với mọi n ∈ N.

27 tháng 1 2017

13 tháng 4 2017

Phân tích nhân tử nhầm=>giải lại

\(A=2n^2-3n^2+n=n\left(2n^2-3n+1\right)=n\left(n-1\right)\left(2n+1\right)\)\(A=n\left(n-1\right)\left(2n+2-3\right)=\left[2n\left(n-1\right)\left(n+1\right)\right]-3\left(n\right)\left(n-1\right)=2B-3C\)

\(\left\{{}\begin{matrix}B⋮3\\C⋮2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2B⋮6\\3C⋮3\end{matrix}\right.\) \(\Rightarrow A⋮6\) => dpcm

13 tháng 4 2017

Lời giải:

\(A=n\left(2n^3-3n+1\right)=n\left(n-1\right)\left(2n^2+2n-1\right)\)

\(A=n\left(n-1\right)\left[2n\left(n+1\right)-1\right]=2n\left(n-1\right)\left(n+1\right)+n\left(n-1\right)=B-C\)\(\left\{{}\begin{matrix}B⋮2\\B⋮3\end{matrix}\right.\)\(\Rightarrow B⋮6\forall n\in N\)

\(C=n\left(n-1\right)\) không thể chia hết cho 6 với mọi n thuộc N

\(\Rightarrow A\) chỉ chia hết cho 6 với điều kiện \(n\ne3k+2\)

ví dụ đơn giải với k=0 => n= 2

\(A=2.2^3-3.2^2+2=14⋮̸6\)

Kết luận đề sai

9 tháng 4 2017

a) Đặt Sn = n3 + 3n2 + 5n

Với n = 1 thì S1 = 9 chia hết cho 3

Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k) 3

Ta phải chứng minh rằng Sk+1 3

Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)

= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5

= k3 + 3k2 + 5k + 3k2 + 9k + 9

hay Sk+1 = Sk + 3(k2 + 3k + 3)

Theo giả thiết quy nạp thì Sk 3, mặt khác 3(k2 + 3k + 3) 3 nên Sk+1 3.

Vậy (n3 + 3n2 + 5n) 3 với mọi n ε N* .

b) Đặt Sn = 4n + 15n - 1

Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1 9

Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.

Ta phải chứng minh Sk+1 9.

Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1

= 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)

Theo giả thiết quy nạp thì Sk 9 nên 4S1 9, mặt khác 9(5k - 2) 9, nên Sk+1 9

Vậy (4n + 15n - 1) 9 với mọi n ε N*

c) Đặt Sn = n3 + 11n

Với n = 1, ta có S1 = 13 + 11n = 12 nên S1 6

Giả sử với n = k ≥ 1 ,ta có Sk = k3 + 11k 6

Ta phải chứng minh Sk+1 6

Thật vậy, ta có Sk+1 = (k + 1)3 + 11(k + 1) = k3 + 3k + 3k + 1 + 11k + 11

= ( k3 + 11k) + 3(k2 + k + 4) = Sk + 3(k2 + k + 4)

THeo giả thiết quy nạp thì Sk 6, mặt khác k2 + k + 4 = k(k + 1) + 1 là số chẵn nên 3(k2 + k + 4) 6, do đó Sk+1 6

Vậy n3 + 11n chia hết cho 6 với mọi n ε N* .



11 tháng 4 2021

Do 2 + 1 chia hết cho 3 nên theo bổ đề LTE ta có \(v_3\left(2^{3^n}+1\right)=v_3\left(2+1\right)+v_3\left(3^n\right)=n+1\).

Do đó \(2^{3^n}+1⋮3^{n+1}\) nhưng không chia hết cho \(3^{n+2}\).

25 tháng 5 2017

a)
Với \(n=1\).
\(n^5-n=1^5-1=0\).
Do 0 chia hết cho 5 nên điều cần chứng minh đúng với n = 1.
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(k^5-k⋮5\).
Ta cần chứng minh nó đúng với \(n=k+1\).
Nghĩa là: \(\left(k+1\right)^5-\left(k+1\right)⋮5\).
Thật vậy:
\(\left(k+1\right)^5-\left(k+1\right)=C^0_5k^0+C^1_5k+...+C^5_5k^5-k-1\)
\(=1+C^1_5k+...+k^5-k-1\)
\(=C^1_5k+...+C^4_5k^4+k^5-k\)
Do mỗi \(C_5^1;C^2_5;C^3_5;C^4_5\) đều chia hết cho 5 và do gải thiết quy nạp \(k^5-k⋮5\) nên \(C^1_5k+...+C^4_5k^4+k^5-k\) chia hết cho 5.
Vì vậy: \(\left(k+1\right)^5-\left(k+1\right)⋮5\).
Vậy điều phải chứng minh đúng với mọi n.

25 tháng 5 2017

b)
Tổng bình phương 3 số tự nhiên liên tiếp là: \(n^3+\left(n+1\right)^3+\left(n+2\right)^3\).
Ta cần chứng minh \(n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9,\forall n\in N^{\circledast}\).
Với n = 1.
\(n^3+\left(n+1\right)^3+\left(n+2\right)^3=1^3+2^3+3^3=36\).
Vậy điều cần chứng minh đúng với \(n=1\).
Giả sử điều cần chứng minh đúng với n = k.
Nghĩa là: \(k^3+\left(k+1\right)^3+\left(k+2\right)^3⋮9\).
Ta cần chứng minh nó đúng với \(n=k+1\).
Nghĩa là: \(\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3⋮9\)
Thật vậy:
\(\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3\)\(=\left(k+1\right)^3+\left(k+2\right)^3+k^3+3.3k^2+3.k.3^2+3^3\)
\(=\left(k+1\right)^3+\left(k+2\right)^3+k^3+9k^2+27k+81\)
Theo giả thiết quy nạp \(k^3+\left(k+1\right)^3+\left(k+2\right)^3⋮9\)\(9k^2+27k+81=9\left(k^2+3k+9\right)⋮9\).
Nên \(\left(k+1\right)^3+\left(k+2\right)^3+k^3+9k^2+27k+81⋮9\).
Vậy điều phải chứng minh đúng với mọi n.