Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ∆MAO = ∆PBO => MO = OP => ∆MNP cân
Vì đường cao NO đồng thời là đường trung tuyến
b, 1 O I 2 - 1 O M 2 + 1 O N 2
= 1 O P 2 + 1 O N 2 = 1 O B 2 => OI = R
=> MN là tiếp tuyến của (O)
c, AM.BN = MI.IN = O I 2 = R 2
d, S A M N B = M N . A B 2
=> S A M N B min
<=> M N m i n <=> AM = R
a: Xét ΔOAM vuông tại A vầ ΔOBP vuông tại B có
OA=OB
góc AOM=góc BOP
Do đó: ΔOAM=ΔOBP
=>OM=OP
Xét ΔNMP có
NO vừa là đường cao, vừa là trung tuyến
nên ΔNMP cân tại N
b: góc NMO=góc NPO
=>góc NMO=góc AMO
Xét ΔMAO và ΔMIO có
MO chung
góc AMO=góc IMO
Do đo: ΔMAO=ΔMIO
=>OI=OA=R
=>MN là tiếp tuyến của (O)
a: Ta có: AM\(\perp\)AB
BP\(\perp\)AB
Do đó: AM//BP
Xet ΔOAM vuông tại A và ΔOBP vuông tại B có
OA=OB
\(\widehat{AOM}=\widehat{BOP}\)(hai góc đối đỉnh)
Do đó: ΔOAM=ΔOBP
=>OM=OP
b: Xét ΔNOM vuông tại O và ΔNOP vuông tại O có
NO chung
OM=OP
Do đó: ΔNOM=ΔNOP
=>\(\widehat{NMO}=\widehat{NPO}\)
=>\(\widehat{NMO}=\widehat{AMO}\)
=>MO là phân giác của góc AMN
Xét ΔMAO vuông tại A và ΔMHO vuông tại H có
MO chung
\(\widehat{AMO}=\widehat{HMO}\)
Do đó: ΔMAO=ΔMHO
=>OA=OH
=>OH=R
Xét (O) có
OH là bán kính
MN\(\perp\)OH tại H
Do đó: MN là tiếp tuyến của (O)
Xét (O) có
NH,NB là các tiếp tuyến
Do đó: NH=NB
ΔMAO=ΔMHO
=>MA=MH
Xét ΔOMN vuông tại O có OH là đường cao
nên \(HM\cdot HN=OH^2=R^2\)
=>\(MA\cdot BN=R^2\)