K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: AM\(\perp\)AB

BP\(\perp\)AB

Do đó: AM//BP

Xet ΔOAM vuông tại A và ΔOBP vuông tại B có

OA=OB

\(\widehat{AOM}=\widehat{BOP}\)(hai góc đối đỉnh)

Do đó: ΔOAM=ΔOBP

=>OM=OP

b: Xét ΔNOM vuông tại O và ΔNOP vuông tại O có

NO chung

OM=OP

Do đó: ΔNOM=ΔNOP

=>\(\widehat{NMO}=\widehat{NPO}\)

=>\(\widehat{NMO}=\widehat{AMO}\)

=>MO là phân giác của góc AMN

Xét ΔMAO vuông tại A và ΔMHO vuông tại H có

MO chung

\(\widehat{AMO}=\widehat{HMO}\)

Do đó: ΔMAO=ΔMHO

=>OA=OH

=>OH=R

Xét (O) có

OH là bán kính

MN\(\perp\)OH tại H

Do đó: MN là tiếp tuyến của (O)

Xét (O) có

NH,NB là các tiếp tuyến

Do đó: NH=NB

ΔMAO=ΔMHO

=>MA=MH

Xét ΔOMN vuông tại O có OH là đường cao

nên \(HM\cdot HN=OH^2=R^2\)

=>\(MA\cdot BN=R^2\)

26 tháng 12 2016

mấy bạn tl nhah dùm mình đi

24 tháng 2 2017

a, ∆MAO = ∆PBO => MO = OP => ∆MNP cân

Vì đường cao NO đồng thời là đường trung tuyến

b,  1 O I 2 - 1 O M 2 + 1 O N 2

=  1 O P 2 + 1 O N 2 = 1 O B 2 => OI = R

=> MN là tiếp tuyến của (O)

c, AM.BN = MI.IN =  O I 2 = R 2

d,  S A M N B = M N . A B 2

=>  S A M N B min

<=>  M N m i n <=> AM = R

a: Xét ΔOAM vuông tại A vầ ΔOBP vuông tại B có

OA=OB

góc AOM=góc BOP

Do đó: ΔOAM=ΔOBP

=>OM=OP

Xét ΔNMP có

NO vừa là đường cao, vừa là trung tuyến

nên ΔNMP cân tại N

b: góc NMO=góc NPO

=>góc NMO=góc AMO

Xét ΔMAO và ΔMIO có

MO chung

góc AMO=góc IMO

Do đo: ΔMAO=ΔMIO

=>OI=OA=R 

=>MN là tiếp tuyến của (O)