Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)
\(P=-\dfrac{3}{5}\) sao suy ra đc \(\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\) thế
\(a,x=16\Rightarrow A=\dfrac{\sqrt{16}+2}{\sqrt{16}-3}=\dfrac{4+2}{4-3}=6\)
\(b,B=\dfrac{\sqrt{x}+5}{\sqrt{x}+1}+\dfrac{\sqrt{x}-7}{1-x}\left(dk:x\ge0,x\ne1,x\ne9\right)\\ =\dfrac{\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-7\right)}{x-1}\\ =\dfrac{x+4\sqrt{x}-5-\sqrt{x}+7}{x-1}\\ =\dfrac{x+3\sqrt{x}+2}{x-1}\\ =\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\left(dpcm\right)\)
\(c,\dfrac{4A}{A}\le\dfrac{x}{\sqrt{x}-3}\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-3}:\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\le\dfrac{x}{\sqrt{x}-3}\)
\(\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-3}.\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\le\dfrac{x}{\sqrt{x}-3}\)
\(\Leftrightarrow4-\dfrac{x}{\sqrt{x}-3}\le0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-12-x}{\sqrt{x}-3}\le0\)
\(\Leftrightarrow\) Pt vô nghiệm
Vậy không có giá trị x thỏa yêu cầu đề bài.
a) Với \(x>0;x\ne1\), ta có:
\(P=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\left[\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}+2}\right].\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\left[\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right].\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
Vậy với \(x>0,x\ne1\)thì \(P=\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(\Rightarrow2P=\frac{2\sqrt{x}+2}{\sqrt{x}}\)
\(2P=2\sqrt{x}+5\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\left(ĐKXĐ:x\ne0\right)\left(1\right)\)
Mà theo đề bài : \(x>0\)nên phương trình luôn được xác định.
\(\left(1\right)\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=\frac{\sqrt{x}\left(2\sqrt{x}+5\right)}{\sqrt{x}}\)
\(\Rightarrow2\sqrt{x}+2=\sqrt{x}\left(2\sqrt{x}+5\right)\)
\(\Leftrightarrow2\sqrt{x}+2=2x+5\sqrt{x}\)
\(\Leftrightarrow2\sqrt{x}+2-2x-5\sqrt{x}\)
\(\Leftrightarrow-2x-3\sqrt{x}+2=0\Leftrightarrow2x+3\sqrt{x}-2=0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2\sqrt{x}-1=0\\\sqrt{x}+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2\sqrt{x}=1\\\sqrt{x}=-2\left(vn\right)\end{cases}}\Leftrightarrow2\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\left(TMĐK:x>0;x\ne1\right)\)
Vậy \(2P=2\sqrt{x}+5\Leftrightarrow x=\frac{1}{4}\)
a.
A = \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
A = \(\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
A = \(\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
A = \(\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
A = \(\dfrac{\left(x-2+\sqrt{x}\right).\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{\left(x-2+\sqrt{x}\right)\left(\sqrt{x}-1\right)+\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{x\sqrt{x}-x-2\sqrt{x}+2+x-\left(x+\sqrt{x}\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{x\sqrt{x}-x-2\sqrt{x}+2+x-\left(x\sqrt{x}+2x+x+2\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{x\sqrt{x}-x-2\sqrt{x}+2+x-x\sqrt{x}-2x-x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{-3x-4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{-\left(3x+4\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{-\sqrt{x}\left(3\sqrt{x}+4\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{3\sqrt{x}+4}{x-\sqrt{x}+2\sqrt{x}-2}\)
A = \(\dfrac{3\sqrt{x}+4}{x-\sqrt{x}-2}\)
a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{x-\sqrt{x}}\right)\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
\(=\dfrac{x-\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)
b: Để A<=3/căn x thì \(\dfrac{x-2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)^2}< =\dfrac{3}{\sqrt{x}}\)
=>\(\dfrac{x-2\sqrt{x}-1-3x+6\sqrt{x}-3}{\left(\sqrt{x}-1\right)^2}< =0\)
=>\(-2x+4\sqrt{x}-4< =0\)
=>\(x-2\sqrt{x}+2>=0\)(luôn đúng)
a) \(Q=\) \(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\left(x>0;x\ne1\right)\)
\(Q=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(Q=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(Q=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(Q=\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) \(=\dfrac{2}{x-1}\) \(\left(đpcm\right)\).
b) Để \(Q\in Z\) <=> \(\dfrac{2}{x-1}\in Z\) <=> \(x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
x -1 | 1 | -1 | 2 | -2 |
x | 2(TM) | 0(ko TM) | 3(TM) | -1(koTM) |
Vậy để biểu thức Q nhận giá trị nguyên thì \(x\in\left\{2;3\right\}\)
a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)
\(\Rightarrow A=\frac{2+1}{2+2}=\frac{3}{4}\)
Vậy với x = 4 thì A = 3/4
b, \(B=\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}+5}{x-1}=\frac{3\left(\sqrt{x}+1\right)-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)( đpcm )
a) Ta có: \(\left(2-\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)=\left[2-\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}\right]\left[2+\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right]\)\(=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2^2-\left(\sqrt{3}\right)^2=4-3=1\) (đpcm)
b) Ta có \(A=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}\)\(=\left[\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}\right].\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\)\(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
`1)P((\sqrtx+1)/(\sqrtx-2)-2/(x-4)).(\sqrtx-1+(\sqrtx-4)/\sqrtx)(x>0,x ne 4)`
`=((x+3\sqrtx+2-2)/(x-4)).((x-\sqrtx+\sqrtx-4)/\sqrtx)`
`=((x+3\sqrtx-4)/(x-4)).((x-4)/\sqrtx))`
`=(x+3\sqrtx)/\sqrtx`
`=(\sqrtx(\sqrtx+3))/\sqrtx`
`=\sqrtx+3(đpcm)`
`2)P=x+3
`<=>\sqrtx+3=x+3`
`<=>x-\sqrtx=0`
`<=>\sqrtx(\sqrtx-1)=0`
Vì `x>0=>\sqrtx>0`
`=>\sqrtx-1=0<=>x=1(tm)`
Vậy `x=1=>\sqrtx+3=x+3`
`1)P((\sqrtx+1)/(\sqrtx-2)-2/(x-4)).(\sqrtx-1+(\sqrtx-4)/\sqrtx)(x>0,x ne 4)`
`=((x+3\sqrtx+2-2)/(x-4)).((x-\sqrtx+\sqrtx-4)/\sqrtx)`
`=((x+3\sqrtx)/(x-4)).((x-4)/\sqrtx))`
`=(x+3\sqrtx)/\sqrtx`
`=(\sqrtx(\sqrtx+3))/\sqrtx`
`=\sqrtx+3(đpcm)`
`2)P=x+3
`<=>\sqrtx+3=x+3`
`<=>x-\sqrtx=0`
`<=>\sqrtx(\sqrtx-1)=0`
Vì `x>0=>\sqrtx>0`
`=>\sqrtx-1=0<=>x=1(tm)`
Vậy `x=1=>\sqrtx+3=x+3`
Bài 2:
Ta có: \(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}\)
a: \(P=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\cdot\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: \(2P=2\sqrt{x}+5\)
=>\(2\left(\sqrt{x}+1\right)=\sqrt{x}\left(2\sqrt{x}+5\right)\)
=>\(2x+5\sqrt{x}-2\sqrt{x}-2=0\)
=>\(2x+3\sqrt{x}-2=0\)
=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)
mà \(\sqrt{x}+2>=2>0\forall x\) thỏa mãn ĐKXĐ
nên \(2\sqrt{x}-1=0\)
=>\(\sqrt{x}=\dfrac{1}{2}\)
=>\(x=\dfrac{1}{4}\left(nhận\right)\)