Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBNQ có
C là trung điểm của BQ
CA//NQ
Do đó: A là trung điểm của NB
Xét ΔCPM có
B là trung điểm của CP
CA//MP
DO đó: A là trung điểm của CM
Xét tứ giác BMNC có
A là trung điểm chung của BN và MC
nên BMNC là hình bình hành
b: Để ANKM là hình bình hành
nên AM//KN và AN//KM
=>AB//MK và AB=MK
=>ABMK là hình bình hành
=>AI//BM
Xét ΔCBM có
A là trung điểm của CA
AI//BM
DO đó; I là trung điểm của BC
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
1. ta có AD = BC (gt)
mà DH = BF (gt)
=> AH =FC
xét ▲AHE và ▲FCG, có:
AE = CG (gt)
góc A = góc C (gt)
AH = FC (cmt)
=>▲AHE = ▲FCG (c.g.c)
=>HE = FG (2 cạnh t/ứ)
cmtt : HG = EF
Vậy EFGH là hbh (đpcm)
a) Xét ΔAEC có
H là trung điểm của EC(E và C đối xứng với nhau qua H)
D là trung điểm của AC(gt)
Do đó: HD là đường trung bình của ΔAEC(Định nghĩa đường trung bình của tam giác)
⇒HD//AE và \(HD=\dfrac{AE}{2}\)(Định lí 2 về đường trung bình của tam giác)
b) Ta có: HD//AE(cmt)
mà I∈HD(gt)
nên AE//IH
Ta có: AI//BC(gt)
mà H∈BC
và E∈BC
nên AI//EH
Xét tứ giác AEHI có
AI//EH(cmt)
AE//HI(cmt)
Do đó: AEHI là hình bình hành(Dấu hiệu nhận biết hình bình hành)
a: góc DFB=góc ACB
góc DBF=góc ACB
=>góc DFB=góc DBF
=>ΔDBF cân tại D
b: Xét tứ giác DCEF có
DF//CE
DF=CE
=>DCEF là hình bình hành
a: Ta có: ED//BC
=>\(\widehat{ADE}=\widehat{ABC}\)(hai góc so le trong) và \(\widehat{AED}=\widehat{ACB}\)(hai góc so le trong)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ADE}=\widehat{AED}\)
=>AE=AD
b: Ta có: AD+AB=BD
AE+AC=CE
mà AD=AE và AB=AC
nên BD=CE
Xét tứ giác BCDE có
BC//DE
BD=CE
Do đó: BCDE là hình thang cân