K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

Sử dụng Nguyên Lí Di - rich - le vào giải bài toán 

17 tháng 4 2018

Đề vô lí!

Chứng minh trong dãy 10,102,104,.....,1020,tồn tại một số chia hết cho 19 dư 1.

Đã chia hết cho 19 còn dư 1.

27 tháng 5 2015

Dãy số 10,102,103,...1020 có tất cả 20 số. Có 20 số khác nhau mà chỉ có 19 số dư trong phép chia cho 19, do đó tồn tại hai số cùng số dư trong phéo chia cho 19.

Gọi 2 số đó là 10và 10n\(\left(1\le n

Như vậy 10m - 10n chia hết cho 19 hay 10n.(10m-n-1) chia hết cho 19

Vì ƯCLN(10n;19)=1 nên 10m-n-1 chia hết cho 19 hay 10m-n chia 19 dư 1

Rõ ràng 10m-n là 1 số thuộc dãy số trên bởi \(1\le n

 

16 tháng 2 2016

ko bt làm hihi

 

26 tháng 8 2015

sai de: tat ca cac so deu ko thể chia cho 9 du 1 dc

chỉ co thể chia cho 9 du 1

ta thấy 10 : 9=1,11(111) du 1

           10*2=10x10:9=100:9

mà 100 gấp đôi 10 thì 100:9=(10:9)x10=1,11(111)x10=11,11(111)

cứ thế làm tiếp nhé

                       9

28 tháng 1 2016

kho

25 tháng 4 2018

giúp mìn nha 

AH
Akai Haruma
Giáo viên
25 tháng 4 2018

Lời giải:

Phản chứng, tức là giả sử không tồn tại số nào trong các số đã cho chia \(19\) dư $1$

Khi đó các số đã cho chia $19$ có thể dư $0,2,3,...,18$ ($19$ loại số dư)

Mà từ \(10,10^2,...,10^{20}\) có $20$ số, nên theo nguyên lý Dirichlet tồn tại ít nhất \(\left[\frac{20}{19}\right ]+1=2\) số có cùng số dư khi chia cho $19$

Giả sử đó là: \(10^m,10^n(1\leq m< n\leq 20)\)

Khi đó: \(10^n-10^m\vdots 19\)

\(\Leftrightarrow 10^m(10^{n-m}-1)\vdots 19\)

\(\Rightarrow 10^{n-m}-1\vdots 19\) hay \(10^{n-m}\) chia $19$ dư $1$

Mà \(n-m\) chắc chắn thuộc trong khoảng từ \(1\to 20\) , tức là tồn tại số nằm trong các số đã cho chia $19$ dư $1$

Vậy điều giả sử sai. Ta có đpcm.

31 tháng 12 2018

Dư 0 là chia hết đấy bạn