K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Lấy ngẫu nhiên 101 số từ tập A. Giả sử 101 số đó là: \(a_1,a_2,...,a_{101}\) ta có thể biễn diễn 101 số đó về dạng.

\(a_1=2^{k_1}b_1;a_2=2^{k_2}b_2;...;a_{101}=2^{k_{101}}b_{101}\) với \(b_1,b_2,...,b_{101}\)là các số lẻ và:

\(1\le b_1,b_2,...,b_{101}\le199\)

Ta thấy rằng từ \(1\rightarrow199\)có 100 số nên tồn tại 2 số \(b_m,b_n\) sao cho: \(b_m=b_n\).

Hay trong 2 số \(a_m,a_n\)có 1 số là bội của số còn lại.

1 tháng 11 2017

Mong mọi người giúp mình

6 tháng 2 2019

C1 : *Xét m < 0 thì m + |m| = m - m = 0

                              m|m| = -|m2| < 0

         Nên m + |m| > m|m|

       *Xét m = 0 thì m + |m| = m|m| (=0)

       *Xét 0 < m < 2 thì m + |m| = 2m

                                   m|m| = m2 

Xét hiệu m2 - 2m = m(m - 2) < 0 V 0 < m < 2

Nên m + |m| > m|m| 

     *Xét m > 2 thì m + |m| = 2m

                            m|m| = m2

Xét hiệu m2 - 2m = m(m - 2) > 0 V m > 2

Nên m + |m| < m|m|

6 tháng 2 2019

C2, Gọi BCNN(1 ; 2 ; 3 ; ... ; 2002) = a

2002 số liên tiếp cần xét là : a ; a + 1 ; a + 2 ; a + 3 ; ... ; a + 2001

Trong 2002 số này thì  a \(⋮\)1 ; 2 ; 3 ; ... ; 2001

=> a ; a + 1 ; ... ; a + 2001 là hợp số 

=> có 2002 số tự nhiên liên tiếp là hợp số