K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2015

1. gọi 3 stn liên tiếp là n,n+1,n+2

ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3

2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3

ta có n+n+1+n+2+n+3 = 4n+6 

vì 4n ; hết cho 4 mà 6 : hết cho 4

=> 4n+6 ko : hết cho 4

3. gọi 2 stn liên tiếp đó là a,b

ta có a=5q + r

b=5q+r

a-b = ( 5q +r) - (5q1+r)

= 5q - 5q1

= 5(q-q1) : hết cho 5

11 tháng 10 2018

a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.

Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)

=3(a+1) \(⋮3\)(vì \(3⋮3\))

Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.

b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3

Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6

=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)

Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.

11 tháng 10 2018

a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )

Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3

b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )

Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.

28 tháng 9 2015

a, gọi 3stn có dạng là : k+1;k+2;k+3

ta có tổng của k+1;k+2;k+3= k+1+k+2+k+3=3k+6 chia hết cho 3 => đpcm

b, gọi 4 stn liên tiếp là; k+1;k+2;k+3;k+4

ta có tổng của k+1;k+2;k+3;k+4= k+1+k+2+k+3+k+4= 4k+ 10 ko chia hết cho 4=> đpcm

28 tháng 9 2015

hung pham tien : đpcm là điều phải chứng minh

11 tháng 9 2015

gọi 3 stn liên tiếp là : a; a+1; a+2.

ta có: a+(a+1)+(a+2)=a+a+1+a+2=(a+a+a)+(1+2)=3.a+3=3.(a+1) chia hết cho 3

=> tổng của 3 stn liên tiếp chia hết cho 3.

gọi 4 stn liên tiếp là: a; a+1; a+2; a+3. 

ta có: a+(a+1)+(a+2)+(a+3)=a+a+1+a+2+a+3=(a+a+a+a)+(1+2+3)=4.a+6. Vì 4.a chia hết cho 4 mà 6 ko chia hết cho 4 nên 4.a+6 ko chia hết cho 4

=> tổng 4 stn liên tiếp ko chia hết cho 4.

11 tháng 9 2015

3 số đó có dạng: a+a+1+a+2 = 3a + 3 = 3(a+1) 

Chia hết cho 3

4 số đó có dạng: a+a+1+a+2+a+3 = 4a + 6 = 4(a+1) + 2

4 a chia hết cho 4 mà 2 không chia hết cho 4

=> Không chia hết cho 4

b) cho 1 số tự nhiên a bất kì thì 4 số TN liên tiếp là a -> a+ 1 ; a + 2 ; a + 3 
tổng = a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4(a + 1) + 2 chia 4 dư 2 
hoặc cho 1 số tự nhiên a - 1 bất kì thì 4 số TN liên tiếp là a - 1 -> a ; a + 1 ; a + 2 
tổng = a - 1 + a + a + 1 + a + 2 = 4a + 2 chia 4 dư 2 
=> dù cho chọn 4 số TN Liên tiếp thì tổng của chúng khi chia 4 luôn dư 2

bài này trong sbt 6 giữa giai xem mà mấy bài này gọi a là ra dễ lắm

21 tháng 12 2017

b) Gọi 4 số tự nhiên liên tiếp có dạng : p , p + 1 , p + 2 , p +3

Tổng 4 số là :

p + p + 1 + p + 2 + p + 3 = p + p + p + p + ( 1 + 2 + 3 ) = p . ( 1 + 1 + 1 + 1 ) + 6 = 4p + 6 không chia hết cho 4

Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4

21 tháng 12 2017

a) Gọi 3 số tự nhiên liên tiếp có dang : p , p + 1 , p + 2

Tổng các số là : 

p + p + 1 + p + 2 = p + p + p + ( 1 + 2 ) = p + p + p + 3 = p . ( 1 + 1 + 1 ) + 3 = 3p + 3 chia hết cho 3

Vậy tổng 3 số tự nhiên liến tiếp chia hết cho 3

12 tháng 11 2017

a,Gọi  2 STN liên tiếp là a; a+1

Với a=2k( k thuộc N) => a chia hết cho 2(1)

Với a=2k+1( k thuộc N) => a+1=2k+1+1=2k+2=2.(k+1) chia hết cho 2 ( do 2 chia hết cho2) =>a+1 chia hết cho 2(2)

Từ (1) và (2) ,ta có 2 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2 

Vậy trong 2 STN liên tiếp có 1 số chia hết cho 2 

28 tháng 11 2014

câu 1: Ta co 3 số tư nhiên liên tiếp là a; a+1 ; a+2

tổng 3 số tự nhiên liên tiếp là a+ (a+1) + (a+2)= 3a+3 =3(a+1) chia hết cho 3

Câu 2: không đúng

vì 4 số tự nhiên là a; (a+1) ; ( a+2); (a+3) thì tổng 4 số tự nhiên liên tiếp là: a+ (a+1) + ( a+2)+ (a+3)= 4a+6= 2(2a+3)

vì số (2a+3) là số lẻ không chia hết cho 2 nên số 2(2a+3) không chia hết cho 4

Câu 3:

a) Ta có S= 1+3+3​​2+33+........348+349= (1+3)+32(1+3)+......348(1+3)=(1+3)(1+32+.....348)=4(1+32+.....348) chia hết cho 4

b) Từ câu  a ta có S= 4(1+32+33+....348) làm tương tự câu a ta có S= 4.4(1+3+32+...347) =..............= 4.4.4.......(1+3)= 449

Số 4 có mũ là lẻ thì tận cùng là số 4 có số mũ chẵn tận cùng là số 6 

Vậy S có tần cùng là số 4

14 tháng 10 2018

a,ta có 2 STN liên tiếp là : a,a+1 

a . (a + 1 ) 

Trường hợp 1

Nếu a là số chẵn thì \(⋮\)=> a . ( a + 1 ) \(⋮\)2 ( Áp dụng tính chất : Nếu có 1 thừa số trong 1 tích chia hết cho số đó thì tích chia hết cho số đó : Ví dụ : 1 . 2 ; 2 chia hết cho 2 => 1.2 = 2 chia hết cho 2 ; 2.3 chia hết cho 2 vì 2 chia hết cho 2 )

Trường hợp 2 

Nếu a là số lẻ => a + 1 là số chẵn chi hết cho 2 => a . (a + 1) chia hết cho 2 

Vậy Tích của 2 số tự nhiên liên tiếp chia hết cho 2 

14 tháng 10 2018

Câu b : 

ta gọi như câu a : a , a+1,a+2 

ta có : a . ( a + 1 ) . ( a + 2 ) 

TH1 nếu a chia hết cho 3 => tích của 3 STH liên tiếp chai hết cho 3 

TH2 Nếu a+1 chia hết cho 3 => Tích của  3 STH liên tiếp chai hết cho 3 

TH3 nếu a + 2 chia hết cho 3 = > Tích của  3 STH liên tiếp chai hết cho 3