K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét 2002 số như sau

2002

20022002

200220022002

.....................

20022002...2002 ( 2002 số 2002 )

Ta có, khi chia một số cho 2001 có 2001 trường hợp có số dư khác nhau gồm 0,1,2,3,4,...,2000

Theo nguyên lý Dirichlet, trong 2002 số trên có ít nhất hai số có cùng số dư khi chia cho 2001 . Gọi hai số đó là avà aj

Suy ra :   ai  - aj chia hết cho 2001 hay

              20022002...2002 - 20022002...2002 chia hết cho 2001

              ( i số 2002 )            ( j số 2002 )

\(\Rightarrow\)\(20022002...2002000...0=20022002...2002+1000...0\)chia hết cho 2001

          ( i - j số 2002)            ( j chữ số 0)        ( i - j số 2002)          

Mà 1000...00 không chia hết cho 2001. Suy ra 20022002...2002 chia hết cho 2001

Ta có điều cần chứng minh

18 tháng 8 2021

Số có 31 số 1có tổng các chữ số là 31,khi chia cho 3 thì dư 1=>a chia co 3 dư 1

Số có 38 số 1có tổng các chữ số là 38,khi chia cho 3 thì dư 2=>b chia 3 dư2

=>ab chia 3 dư 2

=>ab-2 chia hết cho 3(ĐTĐCM)

18 tháng 8 2021

bạn bỏ cái (ĐTĐCM) ở cuối nha. Học tốt

23 tháng 10 2018

Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2 
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3. 
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3. 
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.