Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tam giác đó là ΔBAC cân tại A có BM và CN là hai đường trung tuyến
Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)
\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)
mà AB=AC(ΔBAC cân tại A)
nên AN=NB=AM=MC
Xét ΔAMB và ΔANC có
AM=AN(cmt)
\(\widehat{BAM}\) chung
AB=AC(ΔABC cân tại A)
Do đó: ΔAMB=ΔANC(c-g-c)
Suy ra: BM=CN(hai cạnh tương ứng)
a) Xét ΔDEI và ΔDFI c
DE = DF (ΔDEF cân)
DI là cạnh chung.
IE = IF (DI là trung tuyến)
➩ ΔDEI = ΔDFI (c.c.c)
b) Vì ∆DEI = ∆DFI => \(\widehat{DIE}\) \(= \widehat{DIF}\)
mà \(\widehat{DIE}\)+\(\widehat{DIF}\)=1800( kề bù)
nên \(\widehat{DIE}\)\(= \widehat{DIF}\)=900
c) I là trung điểm của EF nên IE = IF = 5cm.
ΔDIE vuông tại I
➩ DE2=DI2+EI2 (định lí Pitago)
➩ DI2=132–52=144
➩DI=12.
a)xét tam giác AMB và tam giác AMC
AB=AC ( giả thiết )
AM cạnh chung
BM = CM (M là trung điểm cạnh BC)
Vậy tam giác AMB = tam giác AMC
b.ta có : tam giác ABC = tam giác BAM + tam giác MAC =180 (định lí tổng 3 góc )
Xuy ra : tam giác BAM = tam giác MAC = 180/2=90
Xuy ra : AM vuông góc BC
Ta có \(\widehat{BAC}=120^o\Rightarrow\widehat{BAD}=\widehat{DAC}=60^o\)
Xét tam giác ABD có AB = AD và \(\widehat{BAD}=60^o\) nên tam giác ABD đều.
Vậy thì \(\widehat{BDA}=60^o\Rightarrow\widehat{BDE}=180^o-60^o=120^o=\widehat{BAC}\)
Ta có AE = AB + AC = AD + AC
Mà AE = AD + DE nên DE = AC
Xét tam giác BAC và BDE có:
BA = BD (Do tam giác ABD đều)
AC = DE
\(\widehat{BAC}=\widehat{BDE}\)
\(\Rightarrow\Delta BAC=\Delta BDE\left(c-g-c\right)\)
\(\Rightarrow BC=BE\)
và \(\widehat{ABC}=\widehat{DBE}\Rightarrow\widehat{DBE}+\widehat{CBD}=\widehat{ABC}+\widehat{CBD}=\widehat{ABD}=60^o\)
Vậy tam giác BCE có BC = BE nên nó là tam giác cân.
Lại có \(\widehat{CBE}=60^o\) nên BCE là tam giác đều.
Xét ΔOAM và ΔBOM có:
\(OA=OB\left(gt\right)\\ AM=BM\left(gt\right)\\ ChungOM\)
⇒ΔOAM=ΔBOM(c.c.c)
xét △OAM và △BOM
ta có: OA=OB(2 cạnh tương ứng)
MA=MB(2 cạnh tương ứng)
OM là cạnh chung
=>△OAM =△BOM