K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7

a)Xét △HCA và △ACBB

\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{AHC\left(=90\right)\left(gt\right)}\\\widehat{ACB}chung\end{matrix}\right.\)

⇒△HCA và △ACB (g.g)

b)Có △AHC vuông tại H, HE là đường cao (gt)

⇒EH2=AE.EC ( nhận xét hai △ đồng dạng trong △vuông)

11 tháng 6 2018

A B C E F D H I K G

Gọi hình chiếu của B và C trên đường thẳng EF lần lượt là G và K

Ta có: AE và AF là 2 tiếp tuyến của (I) => AE=AF => \(\Delta\)EAF cân đỉnh A

=> ^AEF=^AFE => ^GEB=^KFC (2 góc đối đỉnh)

=> \(\Delta\)BGE ~ \(\Delta\)CKF (g.g) => \(\frac{BE}{CF}=\frac{GE}{KF}\)

Mà \(\frac{BE}{CF}=\frac{BD}{CD}\)(Vì BE=BD và CF=CD theo t/c tiếp tuyến)

\(\Rightarrow\frac{BD}{CD}=\frac{GE}{KF}\). Lại có: Tứ giác BGKC là hình thang có DH//BG//CK

\(\Rightarrow\frac{BD}{CD}=\frac{GH}{KH}=\frac{GE}{KF}=\frac{GH-GE}{KH-KF}=\frac{EH}{FH}\)(T/c dãy tỉ số bằng nhau)

\(\Rightarrow\frac{BE}{CF}=\frac{EH}{FH}\)

Xét \(\Delta\)BEH và \(\Delta\)CFH: ^BEH=^CFH (Bù 2 góc ^AEF và ^AFE bằng nhau); \(\frac{BE}{CF}=\frac{EH}{FH}\)

=> \(\Delta\)BEH ~ \(\Delta\)CFH (c.g.c) => ^BHE=^CHF => 900 - ^BHE = 900 - ^CHF

=> ^BHD=^CHD => HD là phân giác ^BHC (đpcm).

11 tháng 6 2018

cảm ơn bạn nha,chắc cũng là trùm toán chứ nhỉ

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

HB=15^2/25=9cm

HC=25-9=16cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=25/7

=>BD=75/7cm; CD=100/7cm

b: ΔAHB vuông tại H có HI là đường cao

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2

=>AI*AB=AK*AC

c: AI*AB=AK*AC

=>AI/AC=AK/AB

=>ΔAIK đồng dạng với ΔACB