K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3

a) Do \(BD\) là tia phân giác của \(\widehat{ABC}\left(gt\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{CBD}\)

\(\Rightarrow\widehat{ABD}=\widehat{EBD}\)

Xét hai tam giác vuông: \(\Delta BAD\) và \(\Delta BED\) có:

\(BD\) là cạnh chung

\(\widehat{ABD}=\widehat{EBD}\left(cmt\right)\)

\(\Rightarrow\Delta BAD=\Delta BED\) (cạnh huyền - góc nhọn)

b) Do \(\Delta BAD=\Delta BED\left(cmt\right)\)

\(\Rightarrow AD=ED\) (hai cạnh tương ứng)

Xét hai tam giác vuông: \(\Delta ADF\) và \(\Delta EDC\) có:

\(AD=ED\left(cmt\right)\)

\(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)

\(\Rightarrow\Delta ADF=\Delta EDC\) (cạnh góc vuông - góc nhọn kề)

\(AF=EC\) (hai cạnh tương ứng)

c) Do \(\Delta BAD=\Delta BED\left(cmt\right)\)

\(\Rightarrow BA=BD\) (hai cạnh tương ứng)

Lại có:

\(AF=CE\left(cmt\right)\)

\(\Rightarrow BA+AF=BE+EC\)

\(\Rightarrow BF=BC\)

\(\Rightarrow\Delta BCF\) cân tại B

10 tháng 3

a)

Xét △BAD và △BED , ta có :

góc BAD = góc BED ( cùng bằng 90°)

BD là cạnh chung

∠ABD = ∠EBD (BD là tia phân giác)

⇒ △BAD = △BED (cạnh huyền - góc nhọn)

b)

Từ △BAD = △BED ⇒ BA = BE và DA = DE

Xét △ADF và △EDC:

DA = DE

gócADF = góc EDC (đối đỉnh)

∠FAD = ∠CED = 90°

⇒ △ADF = △EDC (g. c .g)

⇒ AF = EC

c) Từ BA = BE ⇒ △BAE cân tại B

⇒ gócBAE = gócBEA

Từ △ADF = △EDC ⇒ góc AFD = góc ECD

Mà gócAFD = ∠BFC (đối đỉnh) ⇒ góc BFC = gócECD

Ta có:

gócBCF = góc BCE + gócECF

gócBFC = gócECD

Suy ra: gócBCF = gócBFC

⇒ △BCF cân tại B

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc EBF chung

=>ΔBEF=ΔBAC

=>BF=BC

c: ΔBFC can tai B

mà BD là phân giác

nên BD là trung tuyến

a; Xét ΔBAD vuôg tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc B chung

=>ΔBEF=ΔBAC

=>BF=BC

c: ΔCBF cân tại B

mà BD là phân giác

nên BD là trung tuyến

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.a) Tính ACb) Kẻ BD là...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.

a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.

b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.

c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.

Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.

a) Tính AC

b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.

c) Chứng minh BD đi qua trung điểm của AE.

Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.

a) Chứng minh tam giác AOI = tam giác BOI

b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.

c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.

  LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~

1
27 tháng 2 2019

cau 1 :

A B C E

Xet tam giac ABD va tam giac EBD co : BD chung

goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)

AB = BE (Gt)

=> tam giac ABD = tam giac EBD (c - g - c)

=> goc BAC = goc DEB (dn) 

ma goc BAC = 90 do tam giac ABC vuong tai A (gt)

=> goc DEB = 90 

=> DE _|_ BC (dn)

b, tam giac ABD = tam giac EBD (cau a)

=> AB = DE (dn)

AB = 6 (cm) => DE = 6 cm

DE _|_ BC => tam giac DEC vuong tai E 

=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)

=> CE2 = 10- 62

=> CE2 = 64

=> CE = 8 do CE > 0