K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2015

1/3=0,33333333333333....(có vô tận c/s 3)

0,333333333333......(vô tận c/s 3 ) x 3 = 0,99999999999..........(vô tận c/s 9 )

0,99999999999..........=0,9999999999999........(vô tận c/s 9 )

tick cho miik

14 tháng 12 2015

0,9999999..... = 0,(9)

= 0,(1) x 9 = 1/9 * 9 = 1

Vậy 0,99999........ = 1

Câu 1: Hai góc đối đỉnh bằng nhau vì chúng cùng kề bù với một góc

Câu 2: Hai đường thẳng phân biệt vuông góc với nhau khi chúng cắt nhau và trong các góc tạo thành, có một góc bằng 90 độ

Câu 3: Hai đường thẳng phân biệt song song với nhau khi chúng không có điểm chung

12 tháng 5 2021

a) Xét ΔABM và ΔACM có:
AB=AC ( ΔABC cân tại A)
Cạnh AM chung  

MB=MC (gt)

⇒ ΔABM=ΔACM (c.c.c)

Vậy ΔABM=ΔACM
b) Vì ΔABM=ΔACM (cmt)
⇒ ∠AMB=∠AMC (2 góc tương ứng)
Ta có:∠AMB+∠AMC=180 ( 2 góc kề bù)
⇒ AMB=AMC=1800/2=900
⇒ AM⊥BC

Vậy AM⊥BC

c) Vì MK⊥AC (gt)

⇒ ∠MKA=∠MKC=900

Vì MH⊥AB (gt)

⇒ ∠MHA=∠MHB=900

Xét ΔHBM và ΔKCM có:

∠MHB∠=MKC=900

MB=MC (gt)

∠HMB∠=KMC (đối đỉnh)

⇒ ΔHBM = ΔKCM (cạnh huyền - góc nhọn)

⇒ BH=CK (2 cạnh tương ứng)

Vậy BH=CK

Mik mỏi tay lám rùi bạn tự làm phần sau nhé

 

12 tháng 5 2021

xét ΔABM và ΔACM có:

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACM}\)(ΔABC cân tại A)

BM=CM(M là trung điểm của BC)

⇒ΔABM=ΔACM(c-g-c)

\(\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)(1)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)(2)

từ (1)và(2)⇒\(\widehat{ABM}=\widehat{ACM}=\dfrac{180^o}{2}=90^o\)

hay AM⊥BC(đ.p.ch/m)

xét 2 tam giác vuông HBM và KCM có

MC=MB(M là trung điểm của BC)

\(\widehat{HBM}=\widehat{KCM}\)(ΔABC cân tại A)

⇒ΔHBM=ΔKCM(c.huyền.g.nhọn)

⇒BH=CK(2 cạnh tương ứng)

vì BP⊥AC và MK⊥AC⇒BP//MK

vì ΔHBM=ΔKCM nên 

\(\widehat{HMB}=\widehat{KMC}\)(2 góc tương ứng)

Mà \(\widehat{KMC}=\widehat{PBM}\)(2 góc đồng vị)

⇒ΔIBM là tam giác cân(đ.p.ch/m)

vì BP⊥AC và MK⊥AC⇒BP//MK(đ.p.ch/m)

16 tháng 9 2017

có câu 2 câu đó là a và b  nhé bạn

Cho tam giác ABC vuông tại A,AH là đường cao,Trên tia đối của tia AH lấy điểm D sao cho AD = AH,Gọi E là trung điểm của HC,F là giao điểm của DE và AC,Chứng minh HF cắt CD tại trung điểm của CD,Chứng minh HF = 1/3CD,Gọi I là trung điểm của AH,Chứng minh EI vuông góc AB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

câu c nhé câu d bỏ

Cho tam giác ABC vuông tại A,AH là đường cao,Trên tia đối của tia AH lấy điểm D sao cho AD = AH,Gọi E là trung điểm của HC,F là giao điểm của DE và AC,Chứng minh HF cắt CD tại trung điểm của CD,Chứng minh HF = 1/3CD,Gọi I là trung điểm của AH,Chứng minh EI vuông góc AB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

10 tháng 11 2017

Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

24 tháng 12 2018

cậu lm đc ch cs thể giải cho mình đc hông