K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2021

đkxđ:\(\left[ \begin{array}{l}x \geq 2\\x \leq -1\end{array} \right.\) 

`bpt<=>\sqrt{x-1}(\sqrt{x+1}+\sqrt{x-1}-2\sqrtx)<=0`

Vì `\sqrt{x-1}>=1>0`

`=>\sqrt{x+1}+\sqrt{x-1}-2\sqrtx<=0`

`<=>\sqrt{x+1}+\sqrt{x-1}<=2\sqrtx`

BP 2 vế

`=>2x+2\sqrt{x^2-1}<=4x`

`<=>>\sqrt{x^2-1}<=x`

`<=>x^2-1<=x^2`(luôn đúng)

Vậy với \(\left[ \begin{array}{l}x \geq 2\\x \leq -1\end{array} \right.\)  thì.......

NV
29 tháng 2 2020

1.

\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)

\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)

Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá

2.

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

Đặt \(x+y+z=t\Rightarrow0< t\le1\)

\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
29 tháng 2 2020

3.

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)

Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)

Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)

4.

ĐKXĐ: \(-2\le x\le2\)

\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)

\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)

Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)

\(y_{min}=-2\) khi \(x=-2\)

15 tháng 2 2020

ĐKXĐ:\(-1\le x\le1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{1+x}=a\\\sqrt{1-x}=b\end{matrix}\right.\left(a;b\ge0\right)\)

Khi đó ta có: \(\left\{{}\begin{matrix}a^2+b^2=2\\x^2=1-ab\end{matrix}\right.\). Thay vào bpt ta có:

\(a+b\le a^2+b^2-\frac{1-ab}{4}\)

Có:\(\left(a+b\right)^2-\frac{7}{4}ab-\frac{1}{4}=\left(a+b\right)^2-\frac{7}{4}\left(\frac{\left(a+b\right)^2-2}{2}\right)-\frac{1}{4}=\left(a+b\right)^2-\frac{7}{8}\left(a+b\right)^2+\frac{7}{4}-\frac{1}{4}=\frac{1}{8}\left(a+b\right)^2+\frac{3}{2}\)bpt <=>\(\frac{1}{8}\left(a+b\right)^2-\left(a+b\right)+\frac{3}{2}\ge0\)

\(\Leftrightarrow\left(a+b\right)^2-8\left(a+b\right)+12\ge0\)

\(\Leftrightarrow\left(a+b-6\right)\left(a+b-2\right)\ge0\left(1\right)\)

Có: \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2< 6\)

=> bpt (1) đúng \(\forall x\in\left[-1;1\right]\)

Vậy tập nghiệm của bất phương trình là [-1;1]