Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{1}{\left(n+1\right).\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2.n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b)\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\( S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
\(a,\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}\cdot\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}\left(n+1-n\right)}\)
\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}=\frac{\sqrt{n-1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
Chứng minh
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}\)
\(\Leftrightarrow3\sqrt[3]{n\left(n+1\right)^2}< 2+3n\)
Lập phương 2 vế rồi rút gọn được
\(\Leftrightarrow9n+8>0\)
Đúng với mọi n dương. Ta có ĐPCM.
Cái còn lại tương tự
Ta có \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
=> biểu thức trên sẽ \(< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+......+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+1}}< 2\)\(\left(dpcm\right)\)
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(=\frac{\sqrt{n}}{n\left(n+1\right)}\)
\(=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
=> Biểu thức trên sẽ bé hơn \(2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+1}}< 2\Rightarrowđpcm\)
Em ko biết tại vì em mới học lớp 4
Ta sẽ chứng minh bằng quy nạp.
\(\sqrt{1^3+2^3+3^3+...+n^3}=\frac{n\left(n+1\right)}{2}\)(1)
Dễ thấy (1) đúng với \(n=1\).
Giả sử (1) đúng với \(n=k\ge1\), tức là: \(\sqrt{1^3+2^3+3^3+...+k^3}=\frac{k\left(k+1\right)}{2}\)
Ta sẽ chứng minh (1) đúng với \(n=k+1\), tức là \(\sqrt{1^3+2^3+3^3+...+\left(k+1\right)^3}=\frac{\left(k+1\right)\left(k+2\right)}{2}\).
Thật vậy, ta có:
\(1^3+2^3+3^3+...+\left(k+1\right)^3=\left[\frac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\)
\(=\left(k+1\right)^2\left(\frac{k^2}{4}+k+1\right)=\left(k+1\right)^2\left[\frac{1}{2}\left(k+2\right)\right]^2\)
\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
suy ra (1) đúng với \(n=k+1\).
Theo nguyên lí quy nạp toán học ta có đpcm.