K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

Đáp án là :

A = 3111411141111 . 

Vì 3+1+1+1+4+1+1+1+4+1+1+1+1=21 . 

Mà 21 chia hết cho 3 . 

Nên A = 3111411141111 là hợp số . 

12 tháng 11 2017

số trên là hợp số vì:

3111411141111chia hết cho3

10 tháng 7 2017

105 + 11 

Ta có:

105 có tổng các chữ số là: 1+0+0+0... = 1 chia 3 dư 1

11 chia 3 dư 2

=> 105 + 11 chia hết cho 3

=> 105 + 11 là h số

23 tháng 10 2015

a) Hợp số (đần nó quen thân )

b) Giống a

c) dấu hiệu chia hết kia rồi còn khi nào nữa

23 tháng 10 2015

a)hợp số vì nó có tận cung là 2 nên chia hết cho 2]

b)hợp số

c)khi có tận cùng là 5

9 tháng 11 2016

A=13.15.19+21.27.23=13.3.5.19+3.7.27.23

  = 3.(13.5.19+7.27.23) chia hết cho 3

=> A là hợp số

B=5.7.9.11-10.17.4=5.7.9.11-5.2.17.4

B=5.(7.9.11-2.17.4) chia hết cho 5

=>B là hợp số 

20 tháng 1 2018

bài này trong sách phát triển có đấy

17 tháng 8 2015

vì là các số nguyên tố > 3 nên khi cộng với 100 nó sẽ là số nguyên tố 

14 tháng 11 2017

B2

Vì p nguyên tố > 3 nên p lẻ => p^2 lẻ => p^2 + 2003 chia hết cho 2

Mà p^2+2003 > 2 => p^2+2003 là hợp số

k mk nha

14 tháng 11 2017

bài 2 số nguyên tố lớn hơn 3 chỉ có thể là số lẻ

=> số lẻ nhân số lẻ bằng một số lẻ 

vì 2003 là số lẻ nên  số lẻ cộng số lẻ bang số chẵn lớn hơn  2 (vì p^2 là một số nguyên dương)

=> p^2 +2003  là hợp số

Câu 1: 

a: p=3 thì 3+2=5 và 3+10=13(nhận)

p=3k+1 thì p+2=3k+3(loại)

p=3k+2 thì p+10=3k+12(loại)

b: p=3 thì p+10=13 và p+20=23(nhận)

p=3k+1 thì p+20=3k+21(loại)

p=3k+2 thì p+10=3k+12(loại)

2.

p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

28 tháng 11 2016

a) sao lai hinh nhu sai?

p nguyen to chia het cho 3 => p  chi co the =3

3 nho hon 9=> 3 chia 9 =0 du 3

dpcm 

28 tháng 11 2016

Câu hỏi này câu a như bị sai đề,
Câu b
p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3 suy ra \(p^2\) chia 3 dư 1.
Suy ra \(p^2+2003\) chia hết cho 3 ( do 2003 chia 3 dư 2)
Vậy \(p^2+2003\) là hợp số.

22 tháng 8 2019

+) Với p=2 \(\Rightarrow p+8=2+8=10\)( ko là SNT )

                   \(\Rightarrow p=2\)( loại )

+) Với \(p=3\Rightarrow p+8=3+8=11\)( là SNT) 

                     \(\Rightarrow4p+1=3.4+1=13\)( là SNT)

                   \(\Rightarrow p=3\)( chọn )

+) Với p>3 \(\Rightarrow p\)có dạng 3k+1            ( k \(\in N\)

                                    hoặc 3k+2

+) Với \(p=3k+1\Rightarrow p+8=3k+1+8=3k+9=3\left(k+3\right)⋮3\)

                                                                                     Mà \(3\left(k+3\right)>0\)

                 \(\Rightarrow3\left(k+3\right)\)là hợp số 

                 \(\Rightarrow p=3k+1\)( loại )

+) Với \(p=3k+2\Rightarrow4p+1=4\left(3k+2\right)+2=12k+10=2\left(6k+5\right)⋮2\) 

                                                                 Mà \(2\left(6k+5\right)>0\)

                \(\Rightarrow2\left(6k+5\right)\)là hợp số

                 \(\Rightarrow p=3k+2\)(loại )

Vậy p và p+8 là SNT thì 4p+1 là SNT