Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\;sin(\alpha + \beta ).sin(\alpha - \beta ) = \;\frac{1}{2}.\left[ {cos\left( {\alpha + \beta - \alpha + \beta } \right) - cos\left( {\alpha + \beta + \alpha - \beta } \right)} \right]\)
\(\begin{array}{l} = \;\frac{1}{2}.(cos2\beta - cos2\alpha ) = \;\frac{1}{2}.(1 - 2si{n^2}\beta - 1 + 2si{n^2}\alpha )\\ = si{n^2}\alpha - si{n^2}\beta \end{array}\)
\(\begin{array}{l}b)\;co{s^4}\alpha - co{s^4}\left( {\alpha - \frac{\pi }{2}} \right) = \;co{s^4}\alpha - si{n^4}\alpha \\ = \;(co{s^2}\alpha + si{n^2}\alpha )(co{s^2}\alpha - si{n^2}\alpha )\\ = \;co{s^2}\alpha -si{n^2}\alpha = cos2\alpha .\end{array}\)
a, Ta có: \({\sin ^2}x + co{s^2}x = 1\)
\(\begin{array}{l} \Leftrightarrow {\sin ^2}\alpha + {\left( {\frac{1}{3}} \right)^2} = 1\\ \Leftrightarrow \sin \alpha = \pm \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}} = \pm \frac{{2\sqrt 2 }}{3}\end{array}\)
Vì \( - \frac{\pi }{2} < \alpha < 0\) nên \(sin\alpha < 0 \Rightarrow \sin \alpha = - \frac{{2\sqrt 2 }}{3}\).
\(b)\;\,sin2\alpha = 2sin\alpha .cos\alpha = 2.\left( { - \frac{{2\sqrt 2 }}{3}} \right).\frac{1}{3} = - \frac{{4\sqrt 2 }}{9}\)
\(c)\;cos(\alpha + \frac{\pi }{3}) = cos\alpha .cos\frac{\pi }{3} - sin\alpha .sin\frac{\pi }{3}\)\( = \frac{1}{3}.\frac{1}{2} - \left( { - \frac{{2\sqrt 2 }}{3}} \right).\frac{{\sqrt 3 }}{2} = \frac{{2\sqrt 6 + 1}}{6}\).
\(cos^2\left(a-b\right)-sin^2\left(a+b\right)\)
\(=\left(cosa.cosb+sina.sinb\right)^2-\left(sina.cosb+cosa.sinb\right)^2\)
\(=cos^2a.cos^2b+sin^2a.sin^2b-sin^2a.cos^2b-cos^2a.sin^2b\)
\(=cos^2b\left(cos^2a-sin^2a\right)-sin^2b\left(cos^2a-sin^2a\right)\)
\(=\left(cos^2b-sin^2b\right)\left(cos^2a-sin^2a\right)\)
\(=cos2a.cos2b\left(dpcm\right)\)
Do \(\alpha\in\left(\frac{\pi}{2};\frac{3\pi}{4}\right)\Rightarrow sin\alpha>0;cos\alpha< 0;tan\alpha< 0\)
\(\frac{tana}{cota}=\frac{\sqrt{5}-1}{\sqrt{5}+1}\Leftrightarrow tan^2a=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{\left(\sqrt{5}-1\right)^2}{4}\Rightarrow tana=\frac{1-\sqrt{5}}{2}\Rightarrow cota=\frac{-1-\sqrt{5}}{2}\)
\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cos^2a=\frac{1}{1+tan^2a}=\frac{5+\sqrt{5}}{10}\)
\(\Rightarrow sin^2a=1-cos^2a=\frac{5-\sqrt{5}}{10}\)
\(sin2a=2sina.cosa=2tana.cos^2a=-\frac{2\sqrt{5}}{5}\)
Thay vào ta được:
\(P=...\)
Bạn tự thay số và bấm máy
\(5sin2a-6cosa=0\)
\(\Leftrightarrow sin2a=\dfrac{6}{5}cosa\)
\(\Leftrightarrow2\cdot sina\cdot cosa=\dfrac{6}{5}\cdot cosa\)
\(\Leftrightarrow cosa\left(2sina-\dfrac{6}{5}\right)=0\)
=>cosa=0 hoặc sina=3/5
hay \(a=\dfrac{\Pi}{2}+k\Pi\) hoặc \(\left[{}\begin{matrix}a=arcsin\left(\dfrac{3}{5}\right)+k2\Pi\\a=\Pi-arcsin\left(\dfrac{3}{5}\right)+k2\Pi\end{matrix}\right.\)
mà 0<a<pi/2
nên \(a=arcsin\left(\dfrac{3}{5}\right)\)
\(A=sina+sina+cota=2\cdot sina+cota\)
\(=\dfrac{38}{15}\)
Đáp án B
Sử dụng phương pháp giải phương trình đẳng cấp bậc 2 đối với sin và cos bằng cách chia cả 2 vế phương trình cho cos 2 x
Sửa lại đề bài là \(cos\left(15^o+2\alpha\right)\) (chứ không phải là \(cos^2\left(15^o+2\alpha\right)\) nhé)
Ta có \(VT=sin^2\left(45^o+\alpha\right)-sin^2\left(30^o-\alpha\right)-sin15^o.cos^2\left(15^o+2\alpha\right)\)
\(=\left[sin\left(45^o+\alpha\right)+sin\left(30^o-\alpha\right)\right]\left[sin\left(45^o+\alpha\right)-sin\left(30^o-\alpha\right)\right]-sin15^ocos^2\left(15^o+2\alpha\right)\)
\(=2sin\left(\dfrac{75^o}{2}\right)cos\left(\dfrac{2\alpha+15^o}{2}\right).2cos\left(\dfrac{75^o}{2}\right)sin\left(\dfrac{2\alpha+15^o}{2}\right)-sin15^ocos^2\left(15^o+2\alpha\right)\)
\(=sin75^o.sin\left(2\alpha+15^o\right)-sin15^o.cos^2\left(2\alpha+15^o\right)\)
\(=sin\left(2\alpha+15^o-15^o\right)\) (dùng \(sin\left(\alpha-\beta\right)=sin\alpha.cos\beta-sin\beta.cos\alpha\))
\(=sin2\alpha=VP\)
Vậy đẳng thức được chứng minh.
Mấy chỗ kia bạn sửa hết \(cos^2\left(15^o+2\alpha\right)\) thành \(cos\left(15^o+2\alpha\right)\) nhé.