K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2023

 Sửa lại đề bài là \(cos\left(15^o+2\alpha\right)\) (chứ không phải là \(cos^2\left(15^o+2\alpha\right)\) nhé)

 Ta có \(VT=sin^2\left(45^o+\alpha\right)-sin^2\left(30^o-\alpha\right)-sin15^o.cos^2\left(15^o+2\alpha\right)\)

\(=\left[sin\left(45^o+\alpha\right)+sin\left(30^o-\alpha\right)\right]\left[sin\left(45^o+\alpha\right)-sin\left(30^o-\alpha\right)\right]-sin15^ocos^2\left(15^o+2\alpha\right)\)

\(=2sin\left(\dfrac{75^o}{2}\right)cos\left(\dfrac{2\alpha+15^o}{2}\right).2cos\left(\dfrac{75^o}{2}\right)sin\left(\dfrac{2\alpha+15^o}{2}\right)-sin15^ocos^2\left(15^o+2\alpha\right)\)

\(=sin75^o.sin\left(2\alpha+15^o\right)-sin15^o.cos^2\left(2\alpha+15^o\right)\)

\(=sin\left(2\alpha+15^o-15^o\right)\) (dùng \(sin\left(\alpha-\beta\right)=sin\alpha.cos\beta-sin\beta.cos\alpha\))

\(=sin2\alpha=VP\)

Vậy đẳng thức được chứng minh.

14 tháng 10 2023

Mấy chỗ kia bạn sửa hết \(cos^2\left(15^o+2\alpha\right)\) thành \(cos\left(15^o+2\alpha\right)\) nhé.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(a)\;sin(\alpha  + \beta ).sin(\alpha  - \beta ) = \;\frac{1}{2}.\left[ {cos\left( {\alpha  + \beta  - \alpha  + \beta } \right) - cos\left( {\alpha  + \beta  + \alpha  - \beta } \right)} \right]\)

\(\begin{array}{l} = \;\frac{1}{2}.(cos2\beta  - cos2\alpha ) = \;\frac{1}{2}.(1 - 2si{n^2}\beta  - 1 + 2si{n^2}\alpha )\\ = si{n^2}\alpha  - si{n^2}\beta \end{array}\)

\(\begin{array}{l}b)\;co{s^4}\alpha  - co{s^4}\left( {\alpha  - \frac{\pi }{2}} \right) = \;co{s^4}\alpha  - si{n^4}\alpha \\ = \;(co{s^2}\alpha  + si{n^2}\alpha )(co{s^2}\alpha  - si{n^2}\alpha )\\ = \;co{s^2}\alpha -si{n^2}\alpha  = cos2\alpha .\end{array}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a, Ta có: \({\sin ^2}x + co{s^2}x = 1\)

\(\begin{array}{l} \Leftrightarrow {\sin ^2}\alpha  + {\left( {\frac{1}{3}} \right)^2} = 1\\ \Leftrightarrow \sin \alpha  =  \pm \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}}  =  \pm \frac{{2\sqrt 2 }}{3}\end{array}\)

Vì \( - \frac{\pi }{2} < \alpha  < 0\) nên \(sin\alpha  < 0 \Rightarrow \sin \alpha  =  - \frac{{2\sqrt 2 }}{3}\).

\(b)\;\,sin2\alpha  = 2sin\alpha .cos\alpha  = 2.\left( { - \frac{{2\sqrt 2 }}{3}} \right).\frac{1}{3} =  - \frac{{4\sqrt 2 }}{9}\)

\(c)\;cos(\alpha  + \frac{\pi }{3}) = cos\alpha .cos\frac{\pi }{3} - sin\alpha .sin\frac{\pi }{3}\)\( = \frac{1}{3}.\frac{1}{2} - \left( { - \frac{{2\sqrt 2 }}{3}} \right).\frac{{\sqrt 3 }}{2} = \frac{{2\sqrt 6  + 1}}{6}\).

\(cos^2\left(a-b\right)-sin^2\left(a+b\right)\)

\(=\left(cosa.cosb+sina.sinb\right)^2-\left(sina.cosb+cosa.sinb\right)^2\)

\(=cos^2a.cos^2b+sin^2a.sin^2b-sin^2a.cos^2b-cos^2a.sin^2b\)

\(=cos^2b\left(cos^2a-sin^2a\right)-sin^2b\left(cos^2a-sin^2a\right)\)

\(=\left(cos^2b-sin^2b\right)\left(cos^2a-sin^2a\right)\)

\(=cos2a.cos2b\left(dpcm\right)\)

NV
2 tháng 6 2019

Do \(\alpha\in\left(\frac{\pi}{2};\frac{3\pi}{4}\right)\Rightarrow sin\alpha>0;cos\alpha< 0;tan\alpha< 0\)

\(\frac{tana}{cota}=\frac{\sqrt{5}-1}{\sqrt{5}+1}\Leftrightarrow tan^2a=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{\left(\sqrt{5}-1\right)^2}{4}\Rightarrow tana=\frac{1-\sqrt{5}}{2}\Rightarrow cota=\frac{-1-\sqrt{5}}{2}\)

\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cos^2a=\frac{1}{1+tan^2a}=\frac{5+\sqrt{5}}{10}\)

\(\Rightarrow sin^2a=1-cos^2a=\frac{5-\sqrt{5}}{10}\)

\(sin2a=2sina.cosa=2tana.cos^2a=-\frac{2\sqrt{5}}{5}\)

Thay vào ta được:

\(P=...\)

Bạn tự thay số và bấm máy

 

\(5sin2a-6cosa=0\)

\(\Leftrightarrow sin2a=\dfrac{6}{5}cosa\)

\(\Leftrightarrow2\cdot sina\cdot cosa=\dfrac{6}{5}\cdot cosa\)

\(\Leftrightarrow cosa\left(2sina-\dfrac{6}{5}\right)=0\)

=>cosa=0 hoặc sina=3/5

hay \(a=\dfrac{\Pi}{2}+k\Pi\) hoặc \(\left[{}\begin{matrix}a=arcsin\left(\dfrac{3}{5}\right)+k2\Pi\\a=\Pi-arcsin\left(\dfrac{3}{5}\right)+k2\Pi\end{matrix}\right.\)

mà 0<a<pi/2

nên \(a=arcsin\left(\dfrac{3}{5}\right)\)

\(A=sina+sina+cota=2\cdot sina+cota\)

\(=\dfrac{38}{15}\)

20 tháng 5 2021

.jkilfo,o7m5ijk

15 tháng 6 2021

 Ta có \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin 5\alpha -2\sin \alpha .\cos 4\alpha -2\sin \alpha .\cos 2\alpha

=\sin 5\alpha -\left(\sin 5\alpha -\sin 3\alpha \right)-\left(\sin 3\alpha -\sin \alpha \right)

=\sin \alpha .

Vậy \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin \alpha

25 tháng 7 2018

Đáp án B

Sử dụng phương pháp giải phương trình đẳng cấp bậc 2 đối với sin và cos bằng cách chia cả 2 vế phương trình cho  cos 2 x