K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2019}{4^{2019}}\)

\(\Rightarrow4S=4(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2019}{4^{2019}})\)

\(\Rightarrow4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{4^{2018}}\)

\(\Rightarrow4S-S=(1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{4^{2018}})-(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2019}{4^{2019}})\)

\(\Rightarrow3S=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2018}}+\frac{2019}{4^{2019}}\)

\(\Rightarrow3S< 1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2018}}\left(1\right)\)

Đặt: \(A=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2018}}\)

\(\Rightarrow4A=4(1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2018}})\)

\(\Rightarrow4A=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2017}}\)

\(\Rightarrow4A-A=(4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2017}})-(1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2018}})\)

\(\Rightarrow3A=4+\frac{1}{4^{2018}}\)

\(\Rightarrow A=\frac{4}{3}+\frac{1}{4^{2018}.3}\)

\(\Rightarrow A< \frac{4}{3}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow3S< \frac{4}{3}\)

\(\Rightarrow S< \frac{4}{9}\Rightarrow S< \frac{4}{9}< \frac{4}{8}=\frac{1}{2}\)

\(\Rightarrow S< \frac{1}{2}\left(đpcm\right)\)

14 tháng 8 2019

\(D=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2018}{4^{2018}}+\frac{2019}{4^{2019}}\)

\(\Rightarrow4D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)

\(\Rightarrow4D-D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)

\(-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-\frac{4}{4^4}-...-\frac{2018}{4^{2018}}-\frac{2019}{4^{2019}}\)

\(\Rightarrow3D=1+\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2018}}\right)-\frac{2019}{4^{2019}}\)

Đặt \(M=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+\frac{1}{4^4}+...+\frac{1}{4^{2018}}\)

\(\Rightarrow4M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)

\(\Rightarrow4M-M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)

\(-\frac{1}{4}-\frac{1}{4^2}-\frac{1}{4^3}-\frac{1}{4^4}-...-\frac{1}{4^{2018}}\)

\(\Rightarrow3M=1-\frac{1}{4^{2018}}\)

\(\Rightarrow M=\frac{1}{3}-\frac{1}{3.4^{2018}}\)

\(\Rightarrow3D=1+\frac{1}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}\)

\(\Rightarrow3D=\frac{4}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}< \frac{4}{3}\)

\(\Rightarrow D< \frac{4}{9}=\frac{40}{90}< \frac{45}{90}=\frac{1}{2}\left(đpcm\right)\)

27 tháng 12 2016

\(\frac{1}{2^2}< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}\right)\)

\(\frac{1}{3^2}< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)\)

\(\frac{1}{4^2}< \frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)\)

\(\frac{1}{5^2}< \frac{1}{2}\left(\frac{1}{4}-\frac{1}{6}\right)\)

....

\(\frac{1}{1990^2}< \frac{1}{2}\left(\frac{1}{1989}-\frac{1}{1991}\right)\)

công hết lại: ra điều cần chứng minh

cho @ ...thêm cái nữa

\(\frac{1}{n^2}< \frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n-2}\right)\)

a: \(\dfrac{3}{4}A=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+...+\left(\dfrac{3}{4}\right)^{2021}\)

=>\(\dfrac{7}{4}\cdot A=\left(\dfrac{3}{4}\right)^{2021}+1\)

=>\(A\cdot\dfrac{7}{4}=\dfrac{3^{2021}+4^{2021}}{4^{2021}}\)

=>\(A=\dfrac{3^{2021}+4^{2021}}{4^{2020}\cdot7}\)

b: Vì 3^2021+4^2021 ko chia hết cho 4^2020*7 nên A ko là số nguyên

3 tháng 5 2019

S = 1 - 1/4 + 1 - 1/9 + 1 - 1/16 + ... + 1 - 1/2019^2

S = (1 + 1 + 1 + ... +1) - (1/4 + 1/9 + 1/16 + ... + 1/2019^2)

S = 2018 - (1/4 + 1/9 + 1/16 + ... + 1/2019^2)

đặt A  = 1/4 + 1/9 + 1/16 + ... + 1/2019^2

có : 1/4 = 1/2*2 < 1/1*2

1/9 = 1/3*3 < 1/2*3

...

1/2019^2 < 1/2018*2019

=> A < 1/1*2 + 1/2*3 + 1/3*4 + ... + /12018*2019

=> A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4+  ... + 1/2018 - 1/2019

=> A < 1 - 1/2019

=> A < 2018/2019

=> A không phải số nguyên

S = 2018 - A

=> S không phải 1 số nguyên

1 tháng 2 2017

thdsgf cjdsshbh

NV
13 tháng 1 2019

\(S=\dfrac{1}{2018}\left(1+\dfrac{1}{1}+1+\dfrac{1}{2}+1+\dfrac{1}{3}+...+1+\dfrac{1}{2018}\right)\)

\(S=\dfrac{1}{2018}\left(2018+\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)

\(S=1+\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)

Do \(\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2018}\right)>0\Rightarrow S>1\) (1)

Lại có:

\(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}< \dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}+...+\dfrac{1}{1}=2018\)

\(\Rightarrow1+\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)< 1+\dfrac{1}{2018}.2018=2\)

\(\Rightarrow S< 2\) (2)

Từ (1), (2) \(\Rightarrow1< S< 2\)

\(\Rightarrow S\) nằm giữa 2 số tự nhiên liên tiếp nên S không phải là số tự nhiên

NV
17 tháng 1 2019

Bạn thấy khó hiểu từ dòng thứ mấy bạn?