K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(VP=x^2+y^2+z^2-2xy+2yz-2zx\)

\(=\left(x^2-xy-xz\right)+\left(y^2-xy+yz\right)+\left(z^2-yz-zx\right)\)

\(=x\left(x-y-z\right)+y\left(y-x+z\right)+z\left(z-y-x\right)\)

\(=x\left(x-y-z\right)-y\left(x-y-z\right)-z\left(x-y-z\right)\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=\left(x-y-z\right)^2=VT\)(đpcm)

b) Ta có: \(VP=x^2+y^2+z^2+2xy-2yz-2zx\)

\(=\left(x^2+xy-zx\right)+\left(y^2+xy-2yz\right)+\left(z^2-yz-zx\right)\)

\(=x\left(x+y-z\right)+y\left(x+y-z\right)+z\left(z-y-x\right)\)

\(=\left(x+y-z\right)\left(x+y\right)-z\left(x+y-z\right)\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=\left(x+y-z\right)^2=VT\)(đpcm)

c) Ta có: \(VP=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)=VT\)(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5=VP\)(đpcm)

14 tháng 8 2020

a) \(\left(x+y-z\right)^2=\left[\left(x+y\right)-z\right]^2\)

\(=\left(x+y\right)^2-2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2-2zx-2yz+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

b) \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

c) \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

8 tháng 9 2018

1, \(\left(xy+z\right)^2-x^2y^2=z\left(2xy+z\right)\)

Biến đổi VT :\(\left(xy+z\right)^2-x^2y^2\)

\(=x^2y^2+2xyz+z^2-x^2y^2\)

\(=2xyz+z^2\)

\(=z\left(2xy+z\right)\) = VP

Vậy \(\left(xy+z\right)^2-x^2y^2=z\left(2xy+z\right)\)

2, \(\left(x^2+y^2\right)^2-4x^2y^2=\left(x+y\right)^2\left(x-y\right)^2\)

Biến đổi VT: \(\left(x^2+y^2\right)^2-4x^2y^2\)

\(=x^4+2x^2y^2+y^4-4x^2y^2\)

\(=x^4-2x^2y^2+y^4\)

Biến đổi VP: \(\left(x+y\right)^2\left(x-y\right)^2\)

\(=\left(x^2+2xy+y^2\right)\left(x^2-2xy+y^2\right)\)

\(=x^4-2x^3y+x^2y^2+2x^3y-4x^2y^2+2xy^3+x^2y^2-2xy^3+y^4\)\(=x^4-2x^2y^2+y^4\)

Ta có VT = VP

Vậy \(\left(x^2+y^2\right)^2-4x^2y^2=\left(x+y\right)^2\left(x-y\right)^2\)

8 tháng 9 2018

1 ) \(VT=\left(xy+z\right)^2-x^2y^2\)

\(=x^2y^2+2xyz+z^2-x^2y^2\)

\(=2xyz+z^2\)

\(=z\left(2xy+z\right)=VP\left(đpcm\right)\)

2 ) \(VT=\left(x^2+y^2\right)^2-4x^2y^2\)

\(=x^4+2x^2y^2+y^4-4x^2y^2\)

\(=x^4+y^4-2x^2y^2\)

\(=\left(x^2-y^2\right)^2\)

\(=\left[\left(x-y\right)\left(x+y\right)\right]^2\)

\(=\left(x-y\right)^2\left(x+y\right)^2=VP\left(đpcm\right)\)

24 tháng 5 2017

lười thế bạn nhân phá ra là được mà

24 tháng 5 2017

a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Biến đổi vế trái ta được :

\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)

\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)

\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

8 tháng 9 2016

DÀI THẾ AI LÀM NỔI

11 tháng 9 2018

a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(A=x^2+2x+y^2-2y-2xy+37\)

\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)

\(A=\left(x-y+1\right)^2+36\)

Thay x - y = 7 vào A

\(A=\left(7+1\right)^2+36\)

\(A=8^2+36\)

\(A=64+36\)

\(A=100\)

b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)

\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)

Thay x - y = 7 vào B

\(B=7^3+7^2-9\)

\(B=343+49-9\)

\(B=383\)

c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)

\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)

\(C=\left(x-y\right)^3-\left(x-y\right)^2\)

Thay x - y = 7 vào C

\(C=7^3-7^2\)

\(C=343-49\)

\(C=294\)

d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)

\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)

\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)

\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)

Thay x - y = 7 vào D

\(D=7^3+7^2-95\)

\(D=343+49-95\)

\(D=297\)

31 tháng 8 2020

a) ( x - 1 )3 + 3x( x - 1 )2 + 3x2( x - 1 ) + x3

= [ ( x - 1 ) + x ) ]3 ( HĐT số 4 )

= [ x - 1 + x ]3

= [ 2x - 1 ]3 

=> đpcm

b) ( x2 - 2xy )3 + 3( x2 - 2xy )y2 + 3( x2 - 2xy )y4 + y6

= [ ( x2 - 2xy ) + y2 ]3 ( HĐT số 4 )

= [ x2 - 2xy + y2 ]3

= [ ( x - y )2 ]3

= ( x - y )6

=> đpcm