Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Đặt \(x=\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}\)Vì x > 0 \(\Rightarrow x=\sqrt{x^2}\)
\(\Rightarrow x^2=2a+2\sqrt{a^2-b}=4\left(\frac{a+\sqrt{a^2-b}}{2}\right)\)\(\Rightarrow x=2\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\)hay \(\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}=2\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\)(1)
Tương tự : Đặt \(y=\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}\)
Xét biểu thức \(\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}>0\Leftrightarrow a+\sqrt{b}>a-\sqrt{b}\Leftrightarrow\sqrt{b}>0\)(luôn đúng)
Do đó : \(y>0\) \(\Rightarrow y=\sqrt{y^2}\)
Ta có : \(y^2=2a-2\sqrt{a^2-b}=4\left(\frac{a-\sqrt{a^2-b}}{2}\right)\Rightarrow y=2\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)hay \(\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}=2\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)(2)
Cộng (1) và (2) theo vế ta được : \(\sqrt{a+\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}+\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)(đpcm)
Câu b) bạn làm tương tự nhé!

1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)

a)ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có: \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\frac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
Ta có: \(A-\frac{2}{3}=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}-\frac{2}{3}\)
\(=\frac{3\left(-5\sqrt{x}+2\right)}{3\left(\sqrt{x}+3\right)}-\frac{2\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+3\right)}\)
\(=\frac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)
\(=\frac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\)
\(=\frac{-17\sqrt{x}-51+51}{3\left(\sqrt{x}+3\right)}\)
\(=\frac{-17}{3}+\frac{17}{\sqrt{x}+3}\)
Ta có: \(\sqrt{x}+3\ge3\forall x\) thỏa mãn ĐKXĐ
\(\Rightarrow\frac{17}{\sqrt{x}+3}\le\frac{17}{3}\forall x\) thỏa mãn ĐKXĐ
\(\Rightarrow\frac{17}{\sqrt{x}+3}-\frac{17}{3}\le\frac{17}{3}-\frac{17}{3}=0\forall x\) thỏa mãn ĐKXĐ
\(\Rightarrow A-\frac{2}{3}\le0\forall x\) thỏa mãn ĐKXĐ
nên \(A\le\frac{2}{3}\)(đpcm)
c) Ta có: \(C=\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{a-2\sqrt{ab}+b}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{a}-\sqrt{b}+2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}=1\)
Vậy: Giá trị của C không phụ thuộc vào a,b(đpcm)

\(1,\)\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}\)
\(=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
ò, Linh ơi, mình nghĩ bạn làm đúng nhưng mà chỗ dấu ''='' thứ nhất bạn ghi ''4b'' nhưng bước đó bạn phải ghi là ''2b'' tại bước đó chưa có quy đồng, quy đồng mới thành 4b do mẫu chung là \(2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\), chắc bạn hiểu, cảm ơn bạn nhiều nha!