Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B chia hết cho 27 tức chia hết cho 3 và 9.
suy ra 10n +18n =28n -1n =27n.
27 chia hết cho 9 và 3
ok , dạng này tui ko giỏi lắm , nhưng thử làm vậy :v
Ta có \(10^n-36n-1=\left(10^n-1\right)-36n=99.....99-36n\)( n chữ số 9 )
\(=9.\left(111..1-4n\right)\)( n chữ số 1 )
\(=9.\left(111...1-n-3n\right)\)
Ta thấy số 1111....1 ( n chữ số 1 ) có tổng các chữ số là n , khi đó \(111...11-n⋮3\)mà \(3n⋮3\)nên
\(\left(111...1-4n\right)⋮3\)mà \(9⋮9\)nên \(9.\left(111....1-4n\right)⋮9\)hay \(10^n-36n-n⋮27\)
Vậy \(10^n-36n-n⋮36\)
Bài 2: ta có tích riêng thứ nhất là .....5, thứ hai cũng là ....5 -> chữ số tận cùng là: ....5 - ....5 = ...0
Bài 3: Gọi số có hai chữ số đó là ab (a,b =<9)
...........................__..... _
Theo đề bài ta có: ab = 9b
=> b = (2; 3; 4; 5; 6; 7; 8; 9)
..........................................
=> Tương ứng với b ta có ab = (18; 27; 36; 45; 54; 63; 72; 81)
Nhận xét: Chỉ có 45 = 9.5
Vậy số đó là 45
a) X = 15
b) X = 4
c ) X= 23
d) X= 11
( Chỉ là ý kiến riêng thôi nhé, nhận gạch đá )
a) \(\frac{6+x}{33}=\frac{7}{11}\)
=> (6 + x). 11 = 33.7
=> 66 + 11x = 231
=> 11x = 231 - 66
=> 11x = 165
=> x = 165 : 11
=> x = 15
b) 15/26 + x/13 = 46/52
=> x/13 = 23/26 - 15/26
=> x/13 = 4/13
=> x = 4
c) 121/27 x 54/11 < x < 100/21 : 25/126
=> 22 < x < 24
=> x = 23 (vì x là số tự nhiên)
d) 1 < 11/x < 12
=> 11/x \(\in\){2; 3; 4 ; ...; 11}
=> x \(\in\) {11/2; 11/3; ...; 1}
Vì x là số tự nhiên => x = 1
\(G< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{199.200}\)
\(G< \frac{1-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{200-199}{199.200}\)
\(G< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(G< 1-\frac{1}{200}< 1\)
111...1(270 chữ số 1)\(⋮27\)\(\Rightarrow\)111...1\(⋮3;9\)
Mà 1 + 1 + 1 + ... + 1(270 chữ số 1) = 1 x 270 = 270\(⋮3;9\)\(\Rightarrow\)270\(⋮27\)
Trần Minh Hoàng làm lung tung nha
Ta có 27 = 3 x 9
Ta có \(A=111...11\)( 270 chữ số 1 )
Ta thấy số A có tổng các chữ số là 270 có cùng số dư trong phép chia cho 3 nên A chia hết cho 3 (1)
Vì A và 9 có cùng số dư trong phép chia cho 9 nên A chia hết cho 9 (2)
Từ (1) và (2) suy ra A chia hết cho 3 và 9 hay A chia hết cho 27
Vậy \(1111....1⋮27\)