K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2015

\(sin^6x+cos^6x=\left(sin^2x\right)^3+\left(cos^2x\right)^3=\left(sin^2x+cos^2x\right)^3-3sin^2xcos^2x\left(sin^2x+cos^2x\right)\)

\(=1^3-3sin^2xcos^2x.1=1-3sin^2xcos^2x\)

22 tháng 9 2017

  sin6x+cos6x=(sin2x)3+(cos2x)3=(sin2x+cos2x)3−3sin2xcos2x(sin2x+cos2x)

1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)

=1

2: \(sin^4x-cos^4x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)

\(=1-2\cdot cos^2x\)

 

23 tháng 6 2019

\(\sin^6x+\cos^6x\\ =\left(\sin^2x\right)^3+\left(\cos^2x\right)^3\\ =\left(\sin^2x+\cos^2x\right)^3-3\sin^2x\cos^2x\left(\sin^2x+\cos^2x\right)\\ =1-3\sin^2x\cos^2x\left(đpcm\right)\)

23 tháng 6 2019

\(sin^6x+cos^6x\)

=\(\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)

=\(sin^4x-sin^2x.cos^2x+cos^4x\)

=\(\left(1-2sin^2x.cos^2x\right)-sin^2x.cos^2x\)

=\(1-3sin^2x.cos^2x\)(đpcm)

\(sin^6x+cos^6x\)=\(1-3sin^2x.cos^2x\)

4 tháng 8 2018

a) ta có : \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)

\(\Leftrightarrow A=sin^2\alpha+2sin\alpha.cos\alpha+cos^2\alpha+sin^2\alpha-2sin\alpha.cos\alpha+cos^2\alpha\)

\(\Leftrightarrow A=2\left(sin^2\alpha+cos^2\alpha\right)=2.1=2\) (không phụ thuộc vào \(\alpha\))

\(\Rightarrow\left(đpcm\right)\)

\(B=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)

\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha\left(sin^2\alpha+cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)

\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha\)

\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3=1^3=1\) (không phụ thuộc vào \(\alpha\) ) \(\Rightarrow\left(đpcm\right)\)

a/A = sin2 + 2. sin.cos + cos2 + sin2 -2cos.sin + cos2= 2

Tớ không biết ghi anpha nên .. bucminh

22 tháng 10 2016

A = sin6x + cos6x +sin4x +cos4x + 5sin2x.cos2x

\(=\left(\sin^2x+\cos^2x\right)\left(\sin^4x-\sin^2x\cos^2x+\cos^4x\right)+\sin^4x+\cos^4x+5\sin^2x\cos^2x\)

\(=2\left(\sin^2x+2\sin^2x\cos^2x+\cos^2x\right)\)

\(=2\)

16 tháng 4 2016

chứng minh dk thì chắc là thiên tài bạn ạ...ở đâu chắc k có hs l10 đâu bạn ....

16 tháng 4 2016

TOÁN LỚP 10

chứng minh rằng biểu thức sau không phụ thuộc vào x :

P = sin2x+cos2x(2sin2x+cos2x)

19 tháng 6 2017

ái chà 

chà mk ko giỏi nhấn cos sin cho lắm

đâu

19 tháng 6 2017

Hè năm ngoái tôi bị mắc dạng này ^^ Và tôi tự mò ra .... vài thứ...
(sina^2)^3+sosa^2)^3 = (sina^2 +cosa^2)(sina^4 -sina^2cosa^2 + cos^4 ) Chú ý sina^2 +cosa^2=1
= >  B=(sina^4 -sina^2cosa^2 + cos^4 )+ 3 sina^2cosa^2 = ( sina^2 + cosa^2)^2 = 1^2 = 1 ^^

Diện  tích hcn là :

6 x 4 = 24

ĐS :...

DD
22 tháng 6 2021

a) \(cos^4x-sin^4x=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=cos^2x-sin^2x\)

b) \(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{tanxcotx}{tanxcotx+cotx}=\frac{1}{1+tanx}+\frac{tanx}{tanx+1}\)

\(=\frac{1+tanx}{1+tanx}=1\)

c) Ta có: \(1+tan^2x=1+\frac{sin^2x}{cos^2x}=\frac{cos^2x+sin^2x}{cos^2x}=\frac{1}{cos^2x}\)

\(\Rightarrow\frac{1}{1+tan^2x}=cos^2x\)

Tương tự \(\frac{1}{1+tan^2y}=cos^2y\)

\(\Rightarrow cos^2x-cos^2y=\frac{1}{1+tan^2x}-\frac{1}{1+tan^2y}\)

\(cos^2x-cos^2y=\left(1-sin^2x\right)-\left(1-sin^2y\right)=sin^2y-sin^2x\)

d) \(\frac{1+sin^2x}{1-sin^2x}=\frac{cos^2x+sin^2x+sin^2x}{cos^2x+sin^2x-sin^2x}=\frac{cos^2x+2sin^2x}{cos^2x}=1+2\left(\frac{sinx}{cosx}\right)^2=1+2tan^2x\)