\(^{5+5^2+5^3+5^4+.......+5^{100}}\)chia hết cho 6

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

               Ta có :

            S = 5 + 52 +53 +54 +.... + 5100        có (100 - 1) : 1 + 1 = 100 số hạng

           S = (5 + 52) + (53 + 54) + ....... + (599 + 5100)

          S = 5 . (1 + 5) + 53 . (1 + 5) + .... + 599 . (1 + 5)

          S = 5 . 6 + 53 . 6 + ..... + 599 . 6

         S = 6 . (5 + 53 + ..... + 599)

        Vì 6 chia hết cho 6 nên S chia hết cho 6 (ĐPCM)

        Ủng hộ mk nha !! ^_^

\(S=5+5^2+5^3+...+5^{100}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+.....+\left(5^{99}+5^{100}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+......+5^{99}\left(1+5\right)\)

\(=\left(1+5\right)\left(5+5^3+.....+5^{99}\right)\)

\(=6\left(5+5^3+....+5^{99}\right)\)

18 tháng 6 2018

a, 4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 5

= ( 4 + \(4^2\) ) + ( \(4^3\) + \(4^4\) ) +... + ( \(4^{59}\) + \(4^{60}\))

= ( 4 + \(4^2\) ) + \(4^3\) . ( 4 + \(4^2\) ) +... + \(4^{59}\). ( 4 + \(4^2\) )

= 20 + \(4^3\) . 20 + ... + \(4^{59}\) . 20

= 20 . ( 1 + \(4^3\) + ... + \(4^{59}\) ) chia hết cho 5

4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 21

= ( 4 + \(4^2\) + \(4^3\) ) + ( \(4^4\) + \(4^5\) + \(4^6\) ) + ... + ( \(4^{58}\)+ \(4^{59}\) + \(4^{60}\) )

= ( 4 + \(4^2\) + \(4^3\) ) + \(4^4\) . ( 4 + \(4^2\) + \(4^3\) ) + ... + \(4^{58}\) . ( 4 + \(4^2\) + \(4^3\) )

= 84 + \(4^4\) . 84 + .... + \(4^{58}\) . 84

= 84 . ( 1 + \(4^4\) + ... + \(4^{58}\) ) chia hết cho 21

b, 5 + \(5^2\) + \(5^3\) + ... + \(5^{10}\) chia hết cho 6

= ( 5 + \(5^2\) ) + ( \(5^3\) + \(5^4\) ) + ... + ( \(5^9\) + \(5^{10}\) )

= ( 5 + \(5^2\) ) + \(5^3\) . ( 5 + \(5^2\) ) + ... + \(5^9\) . ( 5 + \(5^2\) )

= 30 + \(5^3\) . 30 + ... + \(5^9\) . 30

= 30 . ( 1 + \(5^3\) + ... + \(5^9\) ) chia hết cho 6

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

12 tháng 7 2019

b , Số số hạng của S là : ( 100 - 1 ) : 1 + 1 = 100 ssh 

Ta chia S thành 20 nhóm , mỗi nhóm 2 số hạng 

=> S = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 ) 

=> S = 2 . ( 1 + 2 + 22 + 23 + 24 ) + ... + 2 96 . ( 1 + 2 + 22 + 23 + 24 ) 

=> S = 2 . 31 + ... + 296 . 31 

=> S = 31 . ( 2 + .. + 296 ) chia hết cho 31

Vậy S chia hết cho 31 ( đpcm )

5 tháng 5 2016

\(4^1+4^2+4^3+4^4+.....+4^{100}\)

=(4^1+4^2)+(4^3+4^4)+......+(4^99+4^100)

=4(1+4)+4^3(1+4)+.....+4^99(1+4)

=4.5 + 4^3 .5 +......+4^99  .5

=-5(4+4^3+.....+4^99) chia hết cho 5

Thiếu 4^4 nha mấy bạn

17 tháng 11 2015

b1:

B=3+3^2+...+3^60=(3+3^2+3^3)+...+(3^58+3^59+3^60)=3(1+3+3^2)+...+3^58(1+3+3^2)=3*13+...+3^58*13=13(3+...+3^58) (CHIA HẾT CHO 13)

A=5+5^2+...+5^10=(5+5^2)+(5^3+5^4)+...+(5^9+5^10)=5(1+5)+...+5^9(1+5)=5*6+...+5^9*6=(5+...+5^9)*6(CHIA HẾT CHO 6)

B2: bạn kéo xuống dưới nãy mk thấy có ng làm r

b3: (2x+1)(y-5)=168

Ta có bảng sau: 

2x+112478121421244284168
2x01367111320234183167
x0  3   10    
y-5168  24   8    
y173  29   13    

(mấy ô mk để trống là loại vì x,y là số tự nhiên)

16 tháng 10 2017

biểu thứ là gì?

10 tháng 1 2018

M = 5 + 52 + 53 + ... + 52012.

    = ( 5+1 ).52 + ( 5+1 ). 53 +...+( 5+1 ). 5 80

    =6. 52 + 6. 53 + ...+ 6. 5 80

    =\(6\).52.53x...x5 80

Vậy M chia hết cho 6.

17 tháng 10 2015

a) 1 + 5 + 52 + ... + 539

= ( 1 + 5 ) + ( 52 + 5) + ... + ( 538 + 539 )

= 6 + 52(1+5) + ... + 538(1+5)

= 6.(52+53+...+538) chia hết cho 6 

=> đpcm


b) tương tự