K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

Ta có

S=\(16^5+2^{15}\)

\(\Rightarrow S=\left(2^4\right)^5+2^{15}\)

\(\Rightarrow S=2^{20}+2^{15}\)

\(\Rightarrow S=2^{15}.2^5+2^{15}\)

\(\Rightarrow S=2^{15}.\left(2^5+1\right)\)

\(\Rightarrow S=2^{15}.\left(32+1\right)\)

\(\Rightarrow S=2^{15}.33\)

\(\Rightarrow S⋮33\)

Vậy S\(⋮\)33

13 tháng 3 2018

Ta có \(S=16^5+2^{15}\)

\(=\left(2^4\right)^5+2^{15}\)

\(=2^{20}+2^{15}\)

\(=2^5.2^{15}+2^5.2^{10}\)

\(=2^{10}.2^5.\left(2^5+1\right)\)

\(=2^{15}.33⋮33\)

Vậy....

12 tháng 4 2016

16 mũ 5 +2 mũ 15=1081344

1081344:33=32768.

chia hết thây.tính thử lại bằng máy tính xem!

19 tháng 7

ta có :=(24)5 + 215

          = 220 + 215

          = 215.(25 + 1)

          = 215.33 chia hết cho 33

vậy A chia hết cho 33 ( điều phải chứng minh) 

27 tháng 3 2016

Vì bấm máy tính

2 tháng 8 2019

https://olm.vn/hoi-dap/detail/4286241071.html

2 tháng 8 2019

#)Giải :

\(S=16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33\) chia hết cho 33

\(\Rightarrow S⋮33\left(đpcm\right)\)

10 tháng 11 2016

a) S = 5 + 52 + 53 + ... + 5100

=> S = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )

=> S = 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 599( 1 + 5 ) 

=> S = 5 . 6 + 53 . 6 + ... + 599 . 6

=> S = ( 5 + 53 + ... + 599 ) . 6 chia hết cho 6

=> S chia hết cho 6

b) S1 = 2 + 22 + 23 + ... + 2100

=> S1 = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )

=> S1 = 2( 1 + 2 + 22 + 23 + 24 ) + ... +296( 1 + 2 + 22 + 23 + 24 )

=> S1 = 2 . 31 + ... + 296 . 31

=> S1 = ( 2 + ... + 296 ) . 31 chia hết cho 31

=> S1 chia hết cho 31

c) S2 = 165 + 215

=> S2 = ( 24 )5 + 215

=> S2 = 220 + 215

=> S2 = 220( 1 + 25 )

=> S2 = 220 . 33 chia hết cho 33

=> S2 chia hết cho 33

15 tháng 10 2018

dài quá 

1 tháng 10 2015

 ta thấy: 16^5=2^20 
=> A=16^5 + 2^15 = 2^20 + 2^15 
= 2^15.2^5 + 2^15 
= 2^15(2^5+1) 
=2^15.33 
số này luôn chia hết cho 33

Tham khảo