\(=1+2+2^2+2^3+...+2^{25}+2^{29}\)

a)Chia hết cho cho 7

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

30 tháng 8 2020

a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)

=>2n+1 thuộc {1,3,7,21}

2n+113721
n01310

Vậy n thuộc{0,1,3,10}

30 tháng 8 2020

b, n+15 chia hết cho n-3 => n-3+18 chia hết n-3

=>18 chia hết n-3 =>n-3 thuộc Ư(18)

=>18 thuộc B(n-3)=>n-3 thuộc {1,2,3,6,9,18}

 Ta có bảng giá trị sau:

n-312369

18

n45691221

Vậy...

29 tháng 11 2017

Đề bài là tìm n chứ:

a) Ta có:

\(n+5⋮n+2\)

\(\Rightarrow\left(n+2\right)+3⋮n+2\)

\(\Rightarrow3⋮n+2\)

\(\Rightarrow n+2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+2=-1\Rightarrow n=-3\\n+2=1\Rightarrow n=-1\\n+2=-3\Rightarrow n=-5\\n+2=3\Rightarrow n=1\end{matrix}\right.\)

Vậy \(n\in\left\{-3;-1;-5;1\right\}\)

b) Ta có:

\(2n+1⋮n-5\)

\(\Rightarrow\left(2n-10\right)+11⋮n-5\)

\(\Rightarrow2\left(n-5\right)+11⋮n-5\)

\(\Rightarrow11⋮n-5\)

\(\Rightarrow n-5\in U\left(11\right)=\left\{-1;1;-11;11\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n-5=-1\Rightarrow n=4\\n-5=1\Rightarrow n=6\\n-5=-11\Rightarrow n=-6\\n-5=11\Rightarrow n=16\end{matrix}\right.\)

Vậy \(n\in\left\{4;6;-6;16\right\}\)

c) Ta có:

\(n^2+3n-13⋮n+3\)

\(\Rightarrow n\left(n+3\right)-13⋮n+3\)

\(\Rightarrow-13⋮n+3\)

\(\Rightarrow n+3\in U\left(13\right)=\left\{-1;1;-13;13\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+3=-1\Rightarrow n=-4\\n+3=1\Rightarrow n=-2\\n+3=-13\Rightarrow n=-16\\n+3=13\Rightarrow n=10\end{matrix}\right.\)

Vậy \(n\in\left\{-4;-2;-16;10\right\}\)

7 tháng 8 2018

a)  \(A=1+2+3^2+....+3^{11}\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)

\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^{10}\left(1+3\right)\)

\(=\left(1+3\right)\left(1+3^2+...+3^{10}\right)\)

\(=4\left(1+3^2+...+3^{10}\right)\)\(⋮\)\(4\)

b)  \(B=16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)\(⋮\)\(33\)

c) \(C=10^{28}+8=1000...008\)(27 chữ số 0)

Nhận thấy:  tổng các chữ số của C chia hết cho 9   =>  C chia hết cho 9

                   3 chữ số tận cùng của C chia hết cho 8  =>  C chia hết cho 8

mà (8;9) = 1   =>  C chia hết cho 72

d) \(D=8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}.17\)\(⋮\)\(17\)

9 tháng 11 2017

a) \(x⋮9;15< x\le80\)

\(\Rightarrow x\in B\left(9\right)\)

\(B\left(9\right)=\left\{0;9;18;27;...;81;90;...\right\}\)

Mà \(15< x\le80\)

\(\Rightarrow x\in\left\{18;27;36;...;72\right\}\)

b) Mình nghĩ đề bài nên đổi thành: \(17-x⋮x+5\)

17 = 22 - 5

Ta có;

\(\left[22-\left(5+x\right)\right]⋮x+5\)

Mà \(5+x⋮x+5\)

\(\Rightarrow22⋮x+5\)

\(\Rightarrow x+5\inƯ\left(22\right)\)

Th1: x + 5 = 1 => loại ( Nếu đề bài là x thuộc N)

Th2: x + 5 = 2 => loại ( ___________________)

Th3: x + 5 = 11

              x = 11 - 5

              x = 6

Th4: x + 5 = 22

              x = 22 - 5

              x = 17

Vậy \(x\in\left\{17;6\right\}\)

c) Hihi mình k bt

d) x2 + 2x = 80

=> x.x + 2.x =80

=> x(x+2) = 80

Phân tích 80 ra thừa số nguyên tố ta được

80 = 2.2.2.2.5

     = 8 . 10

x và x + 2 là 2 số cách nhau 2 đơn vị

=> x = 8 

Chỗ nào chưa "thông" inbox nha ( Đầu óc k đen tối đâu)

9 tháng 11 2017

bn ko lm bài 3 ak cái bài mà chứng minh S chia hết cho 50 đó

11 tháng 5 2018

Câu 1 :

a) S1 = 1+2+3+...+999

    Số số hạng trong S1 là 999

    S1 =  (1+999)x999:2=499500

    S1 =499500

b) Số số hạng trong S2 là  (2010-10):2+1=1001

    S2= (10+2010)x1001:2=1011010

    S2=1011010

c) Số số hạng trong S3 là  (1001-21):2+1=491

    S3=(21+1001)x491:2=250901

    S3=250901

d)Số số hạng trong S5 là (79-1);3+1=27

   S5=(1+79)x27:2=1080

   S5=1080

e) Số số hạng trong S6 là (155-15):2+1=71

    S6=(15+155)x71:2=6035

f) Số số hạng trong S7 là (115-15):10+1=11

   S7= (15+115)x11:2=715

g) Số số hạng trong S4 là (126-24):1+1=103

    S4= (24+126)x103:2=7725

Câu 2:

Ta có : a + 12 chia hết cho 36

           a+12 chia hết cho 4,9

+)       a+12 chia hết cho 4

          Mà 12 chia hết cho 4

          Suy ra: a chia hết cho 4 (nếu a ko chia hết cho 4 thì a+12 sẽ ko chia hết cho 4)

+)      a+ 12 chia hết cho 9

        Mà 12 ko chia hết cho 9

        Suy ra a ko chia hết cho 9 ( nếu a chia hết cho 9 thì a+12 ko chia hết cho 9)

 Vậy a chia hết cho 4; ko chia hết cho 9

Câu 3 :

a) Từ 1 đến 1000 có số số hạng chia hết cho 5 là:

       (1000-5):5+1= 200(số)

       ĐS: 200 số

b) +)1015+8 chia hết cho 2 vì 1015chia hết cho 2 và 8 chia hết cho 2

    +)1015+8=10..0(15 chữ số 0)+8=10...08(14 chữ số 0)

    Tổng các chữ số của số 10...08(14 chữ số 0) là 9 nên 1015+8 chia hết cho 9

c) +) 102010+8=10..0(2010 chữ số 0)+8=10...08(2009 chữ số 0)

    Tổng các chữ số của số 10...08(2009 chữ số 0) là 9 nên 102010+8 chia hết cho 9

   +) 102010+14=10..0(2010 chữ số 0)+14=10...014(2008 chữ số 0)

    Tổng các chữ số của số 10...014(2008 chữ số 0) là 6 nên 102010+14 chia hết cho 3

   +)102010+14 chia hết cho 2 vì 102010 là số chẵn và 14 là số chẵn

   +)102010 -4=10..0(2010 chữ số 0)-4=99..96(2008 chữ số 9)

    Tổng các chữ số của số 99...96(2008 chữ số 9) là : 2008x9+6=18078 chia hết cho 3

    Nên 102010 -4 chia hết cho 3

Câu 4 :

mik bít làm nhưng buồn ngủ lắm, mai