\(\left(x^4-x^3.y+x^2.y^2-x.y^3+y^4\right).\left(x+4\right)=x^5+y^5\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

a, Ta có:\(\left(4x^2-2xy+y^2\right)\left(2x+y\right)\)

\(=8x^3+4x^2y-4x^2y-2xy^2+2xy^2+y^3\)

\(=8x^3+y^3\)

\(\Rightarrow\left(4x^2-2xy+y^2\right)\left(2x+y\right)=8x^3+y^3\)

2 tháng 7 2019

b,Ta có: \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

\(=x^7-x^6+x^5-x^3+x^2+x^6-x^5+x^4-x^2+x+x^5-x^4+x^3-x+1\)

(rồi bạn nhóm vào trừ cho nhau)

\(=x^7+x^5+1\)

31 tháng 7 2020

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(\Rightarrow x^5+x^4y+x^3y^2+x^2y^3+y^5-yx^4-x^3y^2-x^2y^3-xy^4-y^5=VP\)

\(\Rightarrow dpcm\)

b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(\Rightarrow x^5-x^4y+x^3y^2-x^2y^3+xy^4+yx^4-x^3y^2-xy^4+y^5=VP\)

\(\Rightarrow dpcm\)

c.d làm tương tự

31 tháng 7 2020

Bài làm

a) Biến đổi vế trái, ta được:

\(VT=\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)

\(=\left(x^5-y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(=x^5-y^5=VP\left(đpcm\right)\)

b) Biến đổi vế trái, ta có:

\(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=\left(x^5+y^5\right)+\left(-x^4y+x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(-x^2y^3+x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(=x^5+y^5=VP\left(đpcm\right)\)

c) Biến đổi vế trái, ta có: 

\(VT=\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)\)

\(=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4\)

\(=\left(a^4-b^4\right)+\left(-a^3b+a^3b\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)\)

\(=a^4-b^4=VP\left(đpcm\right)\)

d) Đây là hằng đẳng thức, như vế phải hình như bạn viết bị sai, mik sửa là vế phải nha.

\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)

Biến đổi vế trái, ta có:

\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

\(=\left(a^3+b^3\right)+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)

\(=a^3+b^3=VP\left(đpcm\right)\)

10 tháng 8 2019

a)\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)

\(=x^5-y^5+\left(x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(\Rightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)

b)\(\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

\(=a^3+b^3+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)

\(\Rightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)

10 tháng 8 2019

a) (x - y)(x4 + x3y + x2y2 + xy3 + y4)

= x(x4 + x3y + x2y2 + xy3 + y4) - y(x4 + x3y + x2y2 + xy3 + y4)

= x5 + x4y + x3y2 + x2y3 + xy4 - x4y - x3y2 - x2y3 - xy4 - y5

= x5 - y5

b) (a + b)(a2 - ab + b2)

= a(a2 - ab + b2) + b(a2 - ab + b2)

= a3 - a2b + ab2 + a2b - ab2 + b3

= a3 + b3

3 tháng 11 2015

a. Do \(x=y-1\Rightarrow x-y=1\)

Ta có:

\(A=x^3-y^3-3xy=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1^3+3xy.1-3xy=1\left(đpcm\right)\)

b. \(B=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)

(Do \(x-y=1\))

(Bạn áp dụng hằng đẳng thức \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)vào bài toán)

Kết quả, \(B=x^{16}-y^{16}\left(đpcm\right)\)

 

 

3 tháng 11 2015

a)\(x=y+1\Rightarrow x-y=1\Rightarrow\left(x-y\right)^3=1\)

Hay x3- 3xy(x-y) -  y3=1  => x3- y3 -3xy =1

b) 1.(x+y)(x2+y2)(x4+y4)(x8+y8) = (x-y)(x+y)......................=(x2-y2)(x2+y2)..........=(x4-y4)(x4+y4)......=(x8-y8)(x8+y8) =x16-y16

9 tháng 7 2017

Thao Nguyen VT= Vế trái

VP= Vế phải

9 tháng 7 2017

2. CMR:

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)

Ta có: VT=\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5=x^5-y^5=VP\)=> đpcm.

b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)

Ta có: VT=\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5=VP\)

=> đpcm.

c. \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)

\(\Leftrightarrow x^2+bx+ax+ab=x^2+ax+bx+ab\) (đúng)

=> đpcm.

6 tháng 6 2017

\(a,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)

\(=2x^2+2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3\left(x^2+y^2\right)\)\(b,\left(5x-1\right)+2\left(1-5x\right)\left(4x+5\right)+\left(5x+4\right)\)\(=\left[\left(5x-1\right)-\left(5x+4\right)\right]^2=25\)

6 tháng 6 2017

c)\(Q=\left(x-y\right)^3+\left(x+y\right)^3+\left(x-y\right)^3-3xy\left(x+y\right)\)

\(=x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-3xy^2-3x^2y\)

\(=x^3+y^3\)

d)\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(2P=5^{32}-1\Rightarrow P=\dfrac{5^{32}-1}{2}\)

1 tháng 10 2017

Xét các biểu thức :

\(x^3+y^3+z^3=x^3+y^3+\left(-x-y\right)^3=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)\left(-3xy\right)=-3xy.\left(-z\right)=3xyz\)

\(x^2+y^2+z^2=x^2+y^2+\left(-x-y\right)^2=2\left(x^2+y^2+xy\right)\)

Do đó VT có giá trị là \(5.\left(3xyz\right).2\left(x^2+y^2+xy\right)=30xyz\left(x^2+y^2+xy\right)\)

Xét VP:

\(x^5+y^5+z^5=\left(x^5+y^5\right)+\left(-x-y\right)^5\)

\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)

\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

\(=-5xy.\left[\left(x+y\right)^3-xy\left(x+y\right)\right]\)

\(=-5xy\left(x+y\right)\left(x^2+2xy+y^2-xy\right)\)

\(=5xyz\left(x^2+xy+y^2\right)\)

Do đó VP là \(30xyz\left(x^2+y^2+xy\right)\)

Suy ra điều phải chứng minh.