Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Làm lại:
Ta có: |a| - |b| \(\le\)|a+b| (1)
Xét |a| - |b|\(\le\)0 => (1) đúng (*)
Xét |a| - |b| > 0 ta bình phương 2 vế của (1) được
a2 - 2|a.b| + b2 \(\le\)a2 + 2ab + b2
<=> 2ab + 2|ab| \(\ge\)0 (2)
Xét ab < 0 thì
(2) <=> 2ab - 2ab = 0
=> (1) đúng (**)
Xét ab \(\ge\)0 thì
(2) <=> 2ab + 2ab \(\ge\)0
<=> 4ab \(\ge\)0 (đúng) (***)
Từ (*), (**), (***) suy ra (1) đúng với mọi a,b thuộc R
![](https://rs.olm.vn/images/avt/0.png?1311)
Có \(a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
Khai căn 2 vế
\(\sqrt{2\left(a^2+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=\left|a+b\right|\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tham khảo
- Nếu a ≤ 0 ; b ≤ 0 hoặc a ≥ 0;b ≥ 0 thì |a + b| = |a| + |b|
- Nếu a,b khác dấu và |a| > |b| thì |a+b| = |a| - |b| < |a| < |a| + |b|
- Nếu a,b khác dấu và |b| > |a| thì |a+b| = |b| - |a| < |b| < |a| + |b|
Vậy trong mỗi trường hợp của a và b ta luôn có |a+b| ≤ |a| + |b|
Chúc học tốt !
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow\sqrt{2\left(a^2+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=\left|a+b\right|\)
Dấu "=" \(\Leftrightarrow a=b\)
bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Nên ta cần CM \(a^2+b^2+c^2+ab+bc+ac\ge a^3+b^3+c^3\)
Theo đề bài ta có
\(a\left(a-1\right)\left(a-2\right)\le0\)=> \(a^3\le3a^2-2a\)
Tương tự với b,c => \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\left(a-2\right)\left(b-2\right)\ge0\)=> \(ab\ge2\left(a+b\right)-4\)
Tương tự => \(ab+bc+ac\ge4\left(a+b+c\right)-12\)
Khi đó BĐT <=>
\(a^2+b^2+c^2+4\left(a+b+c\right)-12\ge3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
<=> \(3\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)-6\)
<=>\(\left(a-1\right)\left(a-2\right)+\left(b-1\right)\left(b-2\right)+\left(c-1\right)\left(c-2\right)\le0\)(luôn đúng với giả thiết)
Dấu bằng xảy ra khi \(\left(a,b,c\right)=\left(2;2;2\right),\left(2;2;1\right),....\)và các hoán vị
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Nên \(BĐT\Leftrightarrow a^2+b^2+c^2+ab+bc+ca\ge a^3+b^3+c^3\)
Ta có \(a\left(a-2\right)\left(a-1\right)\le0\Leftrightarrow a^3\le3a^2-2a\)
Tương ta ta có: \(b^3\le3b^2-2b;c^3\le3c^2-2c\)
Cộng từng vế của các bđt trên: \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3\le a^2+b^2+c^2+ab+bc+ca\)
\(+2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)
Đặt \(\)\(K=2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)
Ta lại có
\(\left(a-1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le3a-2\)
Tương tự \(b^2\le3b-2;c^2\le3c-2\)
\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)-6\)(1)
\(\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab\ge2a+2b-4\)
Tương tự \(bc\ge2b+2c-4;ca\ge2c+2a-4\)
\(\Rightarrow ab+bc+ca\ge4\left(a+b+c\right)-12\)(2)
Từ (1) và (2) suy ra \(K\le6\left(a+b+c\right)-12-2\left(a+b+c\right)\)
\(-\left[4\left(a+b+c\right)-12\right]=0\)
\(K\le0\Rightarrow a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\le a^2+b^2+c^2+ab+bc+ca\)
hay \(\text{Σ}_{cyc}a^2+\text{Σ}_{cyc}ab+3\text{Σ}_{cyc}\left(a+b\right)\ge\left(a+b+c\right)^3\)
Đẳng thức xảy ra khi \(\left(a,b,c\right)\in\left(2;2;1\right)\)và các hoán vị hoặc \(a=b=c=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:
\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)
\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )
Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sử dụng AM - GM ta dễ có:
\(abc\left(a+b+c\right)=bc\left(a^2+ab+ac\right)\le\left(\frac{a^2+ab+bc+ca}{2}\right)^2=\left[\frac{\left(a+b\right)\left(a+c\right)}{2}\right]^2=\frac{1}{4}\)
Suy ra đpcm
=> |a| - |b| \(\le\) |a + b|
- Nếu b = 0 thì |a| - |b| = |a| = |a + b|
Bây giờ chỉ còn lại 2 trường hợp với b khác 0
- Nếu a và b cùng dấu, dễ thấy: |a| - |b| < |a| < |a + b| => |a| - |b| < |a + b|
- Nếu a và b trái dấu
+ Nếu a > 0 > b, lại có: |a| > |b| (1)
=> |a| - |b| = a - (-b) = a + b
Từ (1) => bểu thức a + b mang dấu dương, do đó |a + b| = a + b = |a| - |b|
+ Nếu b > 0 > a, lại có: |a| > |b| (2)
=> |a| - |b| = -a - b = -(a + b)
Từ (2) => biểu thức a + b mang dấu âm, do đó |a + b| = -(a + b) = |a| - |b|
Như vậy, |a| - |b|\(\le\) |a + b|
Dấu "=" xảy ra khi b = 0 hoặc a và b cùng bằng 0 hoặc a và b trái dấu ( với b khác 0)
|a+b|=|2a|, nếu a trái dấu b thì sao