\(\frac{1}{5}\)+ \(\frac{1}{15}\) +
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2015

\(=\frac{1}{5}.\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{397}\right)\)

8 tháng 7 2021

Sửa đề \(\frac{3}{2}+\frac{5}{2^2}+\frac{9}{2^3}+...+\frac{2^{100}+1}{2^{100}}=\frac{2+1}{2}+\frac{2^2+1}{2^2}+\frac{2^3+1}{2^3}+...+\frac{2^{100}+1}{2^{100}}\)

\(\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)(100 hạng tử 1) 

\(100+\left(1-\frac{1}{2^{100}}\right)=101-\frac{1}{2^{100}}< 101\)(1)

Vì \(-\frac{1}{2^{100}}>-1\Rightarrow101-\frac{1}{2^{100}}>101-1\Rightarrow B>100\)(2)

Từ (1) và (2) => 100 < B < 101 

1 tháng 11 2018

Ta có  4A=\(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)

Trừ 4A cho A ta được 

3A = \(1-\frac{1}{2^{100}}\)=> 3A <1 => A<1/3 (đpcm)

Chúc bạn học tốt 

1 tháng 11 2018

Ta có :\(A=\frac{1}{2^2}+...+\frac{1}{2^{100}}\)

\(2A=\frac{1}{2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(A=\frac{1}{2}-\frac{1}{2^{100}}\)

Lại có :

\(\frac{1}{3}=\frac{1}{2}-\frac{1}{6}\)

Vì \(\frac{1}{2^{100}}< \frac{1}{6}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{2^{100}}>\frac{1}{2}-\frac{1}{6}\)

\(\Rightarrow A>\frac{1}{3}\)

Vậy \(A>\frac{1}{3}\)(ĐPCM)

1 tháng 11 2016

theo mình thì x = 5 vì mấu số của các phân số đó tăng 6 đơn vị mỗi lần lên , v số cuối sẽ là 30 và x =5

27 tháng 12 2016

Mấy bạn nhớ ghi cách giải dùm mình luôn nhé

27 tháng 12 2016

có số các số ở mẫu số là : (99-1):2+1=50

có số cặp là:50:2=25

tổng mỗi cặp là:1+99=100

tổng các số ở mẫu số là:100*25=2500

vậy kết quả là: 1/2500