K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

\(S=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+.......+\frac{1}{100^2}<\frac{1}{2}\)

\(S=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+........+\frac{1}{100^2}\)<\(\frac{1}{0.2}+\frac{1}{2.4}+\frac{1}{4.6}+.......+\frac{1}{98.100}\)

\(S=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}<\frac{50}{100}=\frac{49}{100}<\frac{1}{2}\)

Vậy \(\frac{49}{100}<\frac{1}{2}\)

22 tháng 3 2016

Ta có 1/22<1/2*3

         1/42<1/3*4

         . . .

         1/1002<1/99*100

=> S<1/2*3+1/3*4+...+1/99*100

=> S<1/2-1/3+1/3-1/4+...+1/99-1/100

=>S<1/2-1/100

=>S<49/100

Mà 49/100<1/2

=>S<1/2

16 tháng 3 2019

Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...

26 tháng 4 2019

a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A< 1+\left(1-\frac{1}{100}\right)\Rightarrow A< 1+1-\frac{1}{100}\Rightarrow A< 2-\frac{1}{100}\Rightarrow A< 2\left(ĐPCM\right)\)

b, \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)

\(\Rightarrow B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2011\cdot2012}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\Rightarrow B< 1-\frac{1}{2012}\Rightarrow B< 1\left(1\right)\)

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)

\(\Rightarrow B>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2012\cdot2013}\)

\(\Rightarrow B>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}\)

\(\Rightarrow B>\frac{1}{2}-\frac{1}{2013}\Rightarrow\frac{1}{2}-\frac{1}{2013}< B\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{2}-\frac{1}{2013}< B< 1\)

26 tháng 4 2019

a)A=1+1/22+1/32+....+1/1002

      <1+1/1.2+1/2.3+...+1/99.100=1+1-1/2+1/2-1/3+...+1/99-1/100=2-1/100=199/200<2

b)B=1/22+1/32+...+1/20122

     <1/1.2+1/2.3+...+1/2011.2012=1-1/2+1/2-1/3+...+1/2011-1/2012=1-1/2012=2011/2012

     1/2-1/2013=2011/4026<2011/2012<1

9 tháng 5 2017

Ta có :\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

=\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}=\)\(\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)\)\(+...+\left(1-\frac{1}{100}\right)\)

=\(\left(1+1+1+....+1\right)\)\(-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=             \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=  \(100-1-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)= vế trên (đpcm)

9 tháng 5 2017

\(S=100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(S=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(\RightarrowĐPCM\)

28 tháng 1 2016

2. 

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)

\(=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2016}\)

28 tháng 1 2016

ai kết bạn không

2 tháng 5 2016

Ta có: 1/2^2 < 1/1.2

          1/3^2 < 1/2.3 

        .........................

.......................................

          1/100^2 < 1/99.100

Ta có: 1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1/1.2 + 1/2.3 + 1/3.4 + ...... + 1/99.100

          1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1 - 1/100

          1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 99/100 < 3/4

         1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 3/4

2 tháng 5 2016

Ta có: 1/2^2 < 1/1.2

          1/3^2 < 1/2.3 

        .........................

.......................................

          1/100^2 < 1/99.100

Ta có: 1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1/1.2 + 1/2.3 + 1/3.4 + ...... + 1/99.100

          1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1 - 1/100

          1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 99/100 < 3/4

         1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 3/4

22 tháng 2 2018

Ta có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2010.2011}\)\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}=1-\frac{1}{2011}=\frac{2010}{2011}>\frac{2010}{2680}=\frac{3}{4}\)

Hình như có gì đó sai sai :')

22 tháng 2 2018

A+1/4=1/2+1/32+......+1/20112

A+1/4<1/2+1/2*3 +1/3*4 +....1/2010*2011

A+1/4<1-1/2011<1=3/4+1/4

A<1/4 (ĐPCM)

23 tháng 6 2020

Ta có:

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

                                                                        \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

                                                                        \(=\frac{1}{2}-\frac{1}{100}\)

                                                                       \(=\frac{49}{100}\)

Mà \(\frac{49}{100}< \frac{1}{2}\)

Vậy \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)

23 tháng 6 2020

Ta có:\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)(1)

Xét\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{50}{100}-\frac{1}{100}\)

\(=\frac{49}{100}\)(2)

\(\frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)(3)

Từ (1), (2), (3)\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\left(đpcm\right)\)

Vậy...

Linz