\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{49\c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2015

Ta có

\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{2-1}{1.2}+\frac{3-2}{3.4}+...+\frac{50-49}{49.50}\)

\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{50}{49.50}-\frac{49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(1-\frac{1}{50}=\frac{49}{50}\)

13 tháng 5 2016

\(\frac{49}{50}\)

25 tháng 6 2016

Ta có: 

1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50

= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/49 - 1/50

= (1 + 1/3 + 1/5 + .... + 1/49) - (1/2 + 1/4 + 1/6 + .... + 1/50)

= (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/49 + 1/50) - 2.(1/2 + 1/4 + 1/6 + ... + 1/50)

= (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/49 + 1/50) - (1 + 1/2 + 1/3 + ... + 1/25)

= 1/26 + 1/27 + 1/28 + ... + 1/50

=> đpcm

19 tháng 9 2019

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.......+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+........+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+.......+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+........+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.......+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+........+\frac{1}{50}\left(đpcm\right)\)

24 tháng 6 2016

Ta thấy:1/1.2 =1−1/2 ,1/2.3 =1/2 −1/3 ,...,1/49.50 =1/49 −1/50 

=>A=1/1.2 +1/2.3 +1/3.4 +...+1/49.50 

=>A=1−1/2 +1/2 −1/3 +1/3 −1/4 +...+1/49 −1/50 

=>A=1−1/50 

=>A=49/50 

26 tháng 6 2016

Cảm ơn bạn nhé nhưng đâu có 1/2*3 đâu?

1 tháng 3 2017

\(A< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{49.50.51}.\)

\(2A< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{49.50.51}\)

\(2A< \frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{51-49}{49.50.51}\)

\(2A< \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{49.50}-\frac{1}{50.51}\)

\(2A< \frac{1}{2}-\frac{1}{50.51}< \frac{1}{2}\Rightarrow A< \frac{1}{4}< \frac{1}{2}\)

29 tháng 1 2020

Ta có :\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

=> Điều phải chứng minh