K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2016

Ta có : \(B=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+\frac{1}{5\cdot5}+\frac{1}{6\cdot6}+\frac{1}{7\cdot7}+\frac{1}{8\cdot8}\)

=> \(B<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)

                                                                                            \(=1-\frac{1}{8}\)

                                                                                            \(=\frac{7}{8}\)<1

Vậy B < 1

16 tháng 5 2016

ta thay 1/22<1/1.2

1/32<1/2.3

................................

1/82<1/7.8

nen B < 1/1.2+1/2.3+1/3.4+.....+1/7.8

nen B < 1/1-1/8

B<1

2 tháng 7 2016

dm mày ngu vừa thôi

2 tháng 7 2016

Có 1/2^2 < 1/1.2

      1/3^2 <1/2.3

          ...

      1/8^2 < 1<7.8

...tự làm như các phép bình thường

21 tháng 4 2019

à

21 tháng 4 2019

hihi

13 tháng 4 2017

Ta có: H=(1/2+1/3+1/4)+(1/5+...+1/8)+(1/9+1/16)+(1/17+...+1/63)

=> H=13/12 + (1/5+...+1/8)+(1/9+...+1/16)+(1/17+...+1/63)

=> H> 1 + 4x(1/8) + 8x (1/16) + (1/17+...+1/63)

=> H> 1+ 1/2 + 1/2 + (1/17+...+1/63)

=> H> 1+1+(1/17+...+1/63)

=> H>1+1

=> H>2

4 tháng 4 2017

b, Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

                \(\frac{1}{3^2}< \frac{1}{2.3}\)

                ..................

                 \(\frac{1}{100^2}< \frac{1}{99.100}\)

Nên C < \(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{99.100}\)

<=> C < \(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)

<=> C < \(1+1-\frac{1}{100}\)

<=> C < \(2-\frac{1}{100}=\frac{199}{100}\)

4 tháng 4 2017

\(B=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{2^5}+...+\frac{1}{2^6-1}\right)\)

\(B< 1+\frac{1}{2}.2+\frac{1}{4}.4+...+\frac{1}{2^5}.32\)

\(B< 1+1+1+...+1\)( 6 số 1)

B<1.6=6

\(C=1+\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

\(C< 1+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.10}\right)=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)\(=1+\left(1-\frac{1}{100}\right)< 1+1=2\)

Vậy C<2

12 tháng 3 2016

ta có:1=1

          1/2+1/3<1/2+1/2=1

          1/4+1/5+...+1/7(co 4 p/số)<1/4+1/4+1/4+1/4=4/4=1

           1/8+..+1/15(c0 8 p/số)<1/8+1/8+...+1/8(co 8 p/số)=8/8=1

           1/16+...+1/31(co 16 phan so)<1/16+...+1/16(co 16 p/số)=16/16=1

            1/32+...+1/63(có 32 p/số)<1/32+...+1/32(có 32 phân số)=32/32=1

Do đó B<1+1+1+1+1+1=6 

DUYỆT MK NHA BẠN

           

5 tháng 9 2017

cái qq gì

25 tháng 4 2019


Ta có:

\(\frac{1}{2}< 6\)

\(\frac{1}{3}< 6\)

\(...\)

\(\frac{1}{63}< 6\)

\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{63}< 6\)

\(\Rightarrow A< 6\left(dpcm\right)\)

\(#Jen\)

Trao đổi nếu cần

3 tháng 5 2018

Trả lời

a) Đặt \(H=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow H< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Leftrightarrow H< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow H< 1-\frac{1}{100}\)

\(\Leftrightarrow H< \frac{99}{100}\)

\(\Leftrightarrow A< 1+\frac{99}{100}\)

Ta thấy \(\frac{99}{100}< 1\Rightarrow A< 2\)

Vậy A<2 (đpcm)

b) Ta có: 1=1

             \(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)

               \(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1\)

               \(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+...+\frac{1}{15}< \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}=1\)

                \(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}< \frac{1}{16}+\frac{1}{16}+...+\frac{1}{16}=1\)

                \(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}< \frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}=1\)

                 \(\Rightarrow B< 1+1+1+1+1+1\)

                 \(\Rightarrow B< 6\)

   Vậy B<6 (đpcm)

21 tháng 10 2016

\(M=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{62}+\frac{1}{63}\)

\(M=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)\)

\(M< 1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+\frac{1}{16}.16+\frac{1}{32}.32\)

\(M< 1+1+1+1+1+1\)

\(M< 1.6=6\left(đpcm\right)\)

22 tháng 10 2016

đpcm là điều phải chứng minh đúng không bn soyeon_Tiểubàng giải?