Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(B=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+\frac{1}{5\cdot5}+\frac{1}{6\cdot6}+\frac{1}{7\cdot7}+\frac{1}{8\cdot8}\)
=> \(B<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
\(=1-\frac{1}{8}\)
\(=\frac{7}{8}\)<1
Vậy B < 1
Có 1/2^2 < 1/1.2
1/3^2 <1/2.3
...
1/8^2 < 1<7.8
...tự làm như các phép bình thường
b, Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
..................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
Nên C < \(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{99.100}\)
<=> C < \(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)
<=> C < \(1+1-\frac{1}{100}\)
<=> C < \(2-\frac{1}{100}=\frac{199}{100}\)
\(B=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{2^5}+...+\frac{1}{2^6-1}\right)\)
\(B< 1+\frac{1}{2}.2+\frac{1}{4}.4+...+\frac{1}{2^5}.32\)
\(B< 1+1+1+...+1\)( 6 số 1)
B<1.6=6
\(C=1+\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
\(C< 1+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.10}\right)=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)\(=1+\left(1-\frac{1}{100}\right)< 1+1=2\)
Vậy C<2
ta có:1=1
1/2+1/3<1/2+1/2=1
1/4+1/5+...+1/7(co 4 p/số)<1/4+1/4+1/4+1/4=4/4=1
1/8+..+1/15(c0 8 p/số)<1/8+1/8+...+1/8(co 8 p/số)=8/8=1
1/16+...+1/31(co 16 phan so)<1/16+...+1/16(co 16 p/số)=16/16=1
1/32+...+1/63(có 32 p/số)<1/32+...+1/32(có 32 phân số)=32/32=1
Do đó B<1+1+1+1+1+1=6
DUYỆT MK NHA BẠN
Ta có:
\(\frac{1}{2}< 6\)
\(\frac{1}{3}< 6\)
\(...\)
\(\frac{1}{63}< 6\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{63}< 6\)
\(\Rightarrow A< 6\left(dpcm\right)\)
\(#Jen\)
Trao đổi nếu cần
Trả lời
a) Đặt \(H=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow H< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Leftrightarrow H< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow H< 1-\frac{1}{100}\)
\(\Leftrightarrow H< \frac{99}{100}\)
\(\Leftrightarrow A< 1+\frac{99}{100}\)
Ta thấy \(\frac{99}{100}< 1\Rightarrow A< 2\)
Vậy A<2 (đpcm)
b) Ta có: 1=1
\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)
\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1\)
\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+...+\frac{1}{15}< \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}=1\)
\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}< \frac{1}{16}+\frac{1}{16}+...+\frac{1}{16}=1\)
\(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}< \frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}=1\)
\(\Rightarrow B< 1+1+1+1+1+1\)
\(\Rightarrow B< 6\)
Vậy B<6 (đpcm)
\(M=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{62}+\frac{1}{63}\)
\(M=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)\)
\(M< 1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+\frac{1}{16}.16+\frac{1}{32}.32\)
\(M< 1+1+1+1+1+1\)
\(M< 1.6=6\left(đpcm\right)\)
đpcm là điều phải chứng minh đúng không bn soyeon_Tiểubàng giải?