K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2017

a) A = 5 + 52 + 53 + ... + 58

\(\Rightarrow\) 2A = 52 + 53 + 54 + ... + 59

\(\Rightarrow\) 2A - A = (52 + 53 + 54 + ... + 59) - (5 + 52 + 53 + ... + 58)

\(\Rightarrow\) A = 59 - 5 = 1 953 125 - 5 = 1 953 120

Vì 1 953 120 \(⋮\) 30 nên A \(⋮\) 30

\(\Rightarrow\) ĐPCT

20 tháng 11 2017

bai 1 (5+52) +....(57+58)

=5.(5+52) +54.(5+52) + 57(5+52)

=5.30 +54 .30 +5.30

=30.(5.54.57) chia hết cho 30

bài 2 

(3+33+35) +...(327+328+329)

=3.(3+33+35) +.....+328.(3+33 +35)
=3.273+...+328.273

=273.(3+ ......+328) chia hết cho 273


 

12 tháng 8 2018

a)  \(\overline{aaaaaa}=a.111111=a.3.37037\) \(⋮\)\(37037\)

b)  Nhận thấy các hạng tử trong B  đều chia hết cho 3   =>  B chia hết cho 3

\(B=3+3^3+3^5+3^7+...+3^{2017}+3^{2019}+3^{2021}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+....+\left(3^{2017}+3^{2019}+3^{2021}\right)\)

\(=3\left(1+3^2+3^4\right)+3^7\left(1+3^2+3^4\right)+...+3^{2017}\left(1+3^2+3^4\right)\)

\(=\left(1+3^2+3^4\right)\left(3+3^7+...+3^{2017}\right)\)

\(=91\left(3+3^7+....+3^{2017}\right)\)\(⋮\)\(91\)

mà  (3;91) = 1

=>  B chia hết cho 273

12 tháng 8 2018

B chia hết cho 273

Còn câu a thì mình không biết nhé, xin lỗi bạn.

16 tháng 10 2017

\(A=5+5^2+5^3+...+5^8\)

\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^6\left(5+5^2\right)\)

\(A=30+5^2.30+...+5^6.30\)

Vì 30\(⋮\)30

\(\Rightarrow A⋮30\)\(\Rightarrow A\in B\left(30\right)\)

8 tháng 8 2019

Câu 1:

Gọi \(\left(3n+2;2n+1\right)=d\)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\frac{3n+2}{2n+1}\)là phân số tối giản.

8 tháng 8 2019

Bìa 2:

a) \(2xy-5x+2y=148\)

\(\Leftrightarrow x\left(2y-5\right)+2y-5=143\)

\(\Leftrightarrow\left(2y-5\right)\left(x+1\right)=143\)

LÀM NỐT

Bài 3:

a: Ta có: \(A=5+5^2+5^3+...+5^8\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)

\(=30\left(1+5^2+5^4+5^6\right)⋮30\)

b: \(B=3+3^3+3^5+...+3^{29}\)

\(=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^3+3^5\right)\)

\(=273\left(1+3^6+...+3^{24}\right)⋮273\)

6 tháng 8 2018

\(C=5+5^2+5^3+5^4+...+5^8\)

     \(=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^7+5^8\right)\)

      \(=\left(5+5^2\right)+5^2.\left(5+5^2\right)+....+5^6.\left(5+5^2\right)\)

       \(=30+5^2.30+...+5^6.30\)

        \(=30.\left(1+5^2+...+5^6\right)⋮30\)

Vậy C là bội của 30 (ĐPCM)

6 tháng 8 2018

ta có: C = 5 + 5^2 + 5^3 + 5^4+...+ 5^8

C = (5+5^2) + (5^3+5^4) + ...+ (5^7+5^8)

C = 30 + 5^2.(5+5^2) + ...+ 5^6.(5+5^2)

C = 30 + 5^2 .30 + ...+ 5^6.30

C = 30.(1+5^2+...+5^6) chia hết cho 30

=> C là bội của 30