Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.4^7
b.8^5
c.cho x mk sẻ tính kết quả nhưng tìm xmk ko tính đâu
b) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=\frac{4^5.\left(1+1+1+1\right)}{3^5.\left(1+1+1\right)}.\frac{6^5.\left(1+1+1+1+1+1\right)}{2^5.\left(1+1\right)}\)
\(=\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=\frac{4^6}{3^6}.\frac{6^6}{2^6}=\frac{2^{12}.2^6.3^6}{3^6.2^6}=2^{12}\)
Ta có: \(2^{12}=\left(2^3\right)^4=8^4\)
Vậy x= 4
a, \(A=\frac{12}{3.7}+\frac{12}{7.11}+...+\frac{12}{195.199}\)
\(=3.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{195.199}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{195}-\frac{1}{199}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{199}\right)\)
\(=3.\left(\frac{199}{597}-\frac{3}{597}\right)\)
\(=3.\frac{196}{597}\)
\(=\frac{196}{199}\)
\(C=\frac{3.8.15....80.99}{4.9.16.81.100}\)
\(=\frac{1.3.2.4.3.5...8.10.9.11}{2.2.3.3.4.4...9.9.10.10}\)
\(=\frac{\left(1.2.3....9\right).\left(3.4.5...10.11\right)}{\left(2.3.4.5...10\right).\left(2.3.4...10\right)}\)
\(=\frac{11}{10}\)
trả lời
c=\(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot....\cdot\frac{99}{100}\)
C=\(\frac{3.8.15....99}{4.9.16.100}\)
C=\(\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4....10.10}\)
C=\(\frac{\left(1.2.....9\right)}{2.3....10}.\left(\frac{3.4....11}{2.3...10}\right)\)
C=\(\frac{1}{10}\cdot\frac{11}{2}=\frac{11}{20}\)
Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}....\frac{100}{101}\)
Nhận xét: Nếu \(\frac{a}{b}<1\) thì \(\frac{a+m}{b+m}<1\) với số m> 0 bất kì
=> \(\frac{1}{2}<\frac{2}{3}\)
\(\frac{3}{4}<\frac{4}{5}\)
.......
\(\frac{99}{100}<\frac{100}{101}\)
=> \(\frac{1}{2}.\frac{3}{4}....\frac{99}{100}<\frac{2}{3}.\frac{4}{5}....\frac{100}{101}\)=> A < B
=> A . A < A.B <=> A2 < \(\left(\frac{1}{2}.\frac{3}{4}....\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}....\frac{100}{101}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}.\frac{100}{101}=\frac{1}{101}\)
=> \(A<\frac{1}{\sqrt{101}}\) (ĐPCM)