Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(a+b\right)^2\left(a^2-ab+b^2\right)+\left(a+b\right)\left(a^2+ab+b^2\right)\)
\(=a^3+b^3+a^3-b^3=2a^3+0=2a^3\)
vậy => đpcm
a, Ta có: \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)
= \(a^3+b^3+a^3-b^3=a^3+a^3=2a^3\)
\(\xrightarrow[]{}\) đpcm
b, Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(\left(a-b\right)^2+ab\right)\)
\(\xrightarrow[]{}\) đpcm
c, Ta có: \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(\xrightarrow[]{}\) đpcm
Tham khảo nè!!
Câu hỏi của Phạm Thị Cẩm Huyền - Toán lớp 8 | Học trực tuyến
Chúc bn học tốt!!
1/
\(\left(1\right)=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\)
2/
\(\left(2\right)=a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
\(\left(2\right)=\left(a+b\right).\left[\left(a^2-2ab+b^2\right)+ab\right]=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
3/
\(\left(3\right)=\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)
\(\left(3\right)=\left[\left(ac\right)^2+2acbd+\left(bd\right)^2\right]+\left[\left(ad\right)^2-2adbc+\left(bc\right)^2\right]\)(do t/c giao hoán trong phép nhân => 2acbd=2adbc)
\(\left(3\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)\(=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\Rightarrowđpcm\)
\(b,\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(=\left(a^3+b^3\right)\Rightarrowđpcm\)
\(c,\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Rightarrowđpcm\)
a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)
= a3+b3+a3-b3 = 2a3
b) a3+b3
= (a+b)(a2-ab+b2)
= (a+b)(a2- 2ab+b2)+ab
= (a+b)(a2-b2)+ab
a) Ta có : BE // AC
\(\Rightarrow\)^AEB = ^EAC
\(\Rightarrow\)^AEB = ^BAE (= ^EAC)
\(\Rightarrow\)△AEB cân tại B (ĐPCM)
b) Xét △ABC có AD là tia phân giác của góc A
\(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}\)
Mà AB = BE (△AEB cân tại B)
\(\Rightarrow\frac{DB}{DC}=\frac{BE}{AC}\)(ĐPCM)
c) Xét △ABC có AD là tia phân giác của góc A
\(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}\)(Đã chứng minh ở câu b)
d) Ta có :\(\frac{DB}{DC}=\frac{AB}{AC}\)
\(\Rightarrow\frac{DB}{3}=\frac{2,5}{5}\)
\(\Rightarrow DB=1,5\)
Vậy DB = 1,5 cm
a/
Đẳng thức <=> (ac)² + (ad)² + (bc)² + (bd)² = (ac)² + (ad)² + (bc)² + (bd) + 2ac.bd - 2ad.bc
<=> 2.ad.bc - 2.ad.bc = 0
<=> 0 = 0 ( đúng ) => đẳng thức đã cho đúng
b/
Đẳng thức <=> 2a² + 2b² + 2c² = 2ab + 2bc + 2ac
<=> a² - 2ab + b² + b² - 2bc + c² + c² - 2ac + a² = 0
<=> ( a - b)² + ( b - c)² + ( c - a)² = 0
<=> (a - b)² = 0 và (b - c)² = 0 và (c - a)² = 0
<=> a - b = 0 và b - c = 0 và c - a = 0
<=> a = b, b = c, c = a => a = b = c
(vì tổng 3 số hk âm = 0 khi mỗi số điều = 0)
c/ từ giả thuyết => a + b = -c,
ta có:
a³ + b³ + c³ -3abc = ( a + b)³ - 3ab( a + b) + c³ -3abc = -c³ + 3abc + c³ - 3abc = 0
( vì a³ + b³ = ( a + b)( a² - ab + b²) = (a + b)( (a + b)² - 3ab ) = ( a + b)³ - 3ab( a + b)
=> ĐPCM