Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)
\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)
Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)
Do đó :
\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+.....+\frac{1}{100^2}< \frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}\right)\)
\(\Leftrightarrow\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3}............\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{49.50}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\)
\(\Leftrightarrow1-\frac{1}{50}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}\Rightarrow1+\frac{1}{2^2}+....+\frac{1}{50^2}< 1+1=2\)
\(\Leftrightarrow\frac{1}{2^2}.\left(1+\frac{1}{2^2}+....+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\)
\(\LeftrightarrowĐPCM\)
Ta có
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow...............< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow...................< 1-\frac{1}{100}\)
\(\Rightarrow..............< \frac{99}{100}\)
Mà \(\frac{99}{100}< 1\)
\(\Rightarrow....................< 1\)
Vậy..................
a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)
=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}< 1\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..............+\frac{1}{99^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+................+\frac{1}{98.99}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+............+\frac{1}{98}-\frac{1}{99}\)
\(=1-\frac{1}{99}=\frac{98}{99}< 1\)
\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.............+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...............+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
Vậy \(\frac{49}{100}< A< 1\)
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\), \(\frac{1}{3^2}< \frac{1}{2.3},\frac{1}{4^2}< \frac{1}{3.4}\) ,.................., \(\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< 1+1-\frac{1}{100}\)
=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{199}{100}< 2\)
Vậy A<2
Mik chỉ biết vậy thôi không biết có đúng không nhưng nhớ k mik nha
Chứng minh rằng:
\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)